

MDBMS III-B.Sc 1 compiled by J. Kishore Kumar Reddy

U N I T – 1 <> C O N T E N T S
(CHAPTER 1, 2 & 3)

Data vs Information

Introducing the Database and DBMS

 Role and advantages of DBMS

 Types of databases

Why Database design is important

Historical Roots : Files and File Systems

Problems with File System Data Management

Database systems

 Database systems environment

 DBMS Functions

Importance of Data Models

Business Rules

Evaluation of Data Models

 Hierarchical, Network, Relational, ER, OO models

Logical view of Data

Keys

Integrity Rules

Relational set operators

Indexes

Codd‟s Relational Database Rules

C

H

A

P

T

E

R

 I

C

H

A

P

T

E

R

 II

C

H

A

P

T

E

R

 III

MDBMS III-B.Sc 2 compiled by J. Kishore Kumar Reddy

UNIT – I

INTRODUCTION TO DATA BASE SYSTEMS AND FUNDAMENTALS

BASIC CONCEPTS AND DEFENITIONS:

 DATA

 INFORMATION

Data:

Def.1:

Data referred to known facts that could be recorded and stored on computer media.

Ex: In a student database, the data would include facts such as student name, age,

address, and marks.

Def. 2:

Data are raw facts. The word raw indicates that the facts have not yet been

processed to reveal their meaning.

 Databases today are used to store objects such as documents, photographic

images, sound, and even video segments. So the following is broadened definition.

Def. 3:

“Data consist of facts, text, graphics, images, sound and video segments that have

meaning in the users‟ environment”.

Information:

 The terms data and information are closely related, and in fact are often used

interchangeably.

Def:

” Data that have been processed in such a way as to increase the knowledge of the

person who uses the data”.

To convert data into information is to summarize them or otherwise process

and present them for human interpretation.

Steps for transferring raw data into information:

A) Initial Survey Screen

B) Raw Data

C) Information in Summary Format

D) Information in Graphic Format

MDBMS III-B.Sc 3 compiled by J. Kishore Kumar Reddy

Today databases may contain either data or information (or both).

In this “information age” the information must maintain the quality. By

quality information we mean information that is

1. Accuracy

2. Timeliness

3. Relevancy

1. Accuracy: It means that the information is free from mistakes and errors.

Accuracy means more than „one plus one equals two‟.

2. Timeliness: It means that the recipients can get the information when they

need it. The information should maintain time frame.

3. Relevancy: Relevancy means the use of a piece of information for a

particular person.

Some key points for information:

 Data constitute the building blocks of information

 Information is produced by processing data.

 Information is used to reveal the meaning of data.

 Accurate, relevant, and timely information is the key to good decision

making.

 Good decision making is the key to organizational survival in a global

environment.

INTRODUCING THE DATABASE AND THE DBMS:

Database:

Def:

”Database is defined as an organized collection of related data”.

By organized we mean that the data are structured so as to be easily stored,

manipulated, and retrieved by users.

Metadata:

Def. 1:

“Metadata are data that describe the properties or characteristics of other data”.

 Some of these properties include data definitions, data structures and rules

or constraints.

Metadata show the data item name, the data type, length, minimum and

maximum allowable values and brief description of each data item.

MDBMS III-B.Sc 4 compiled by J. Kishore Kumar Reddy

Ex: some sample metadata for the Class Roster are listed in the following table.

 Data item value

Name type length min max description .

Course Alphanumeric 30 Course ID and name

Section Integer 1 1 9 Section number

Semester Alphanumeric 10 semester and year

Name Alphanumeric 30 Student name

ID integer 9 Student ID

Metadata allow database designers and users to understand what data exist,

what the data mean and what the fine distinctions are between seemingly similar

data items.

Def. 2:

The database contains the data you have collected and “data about data” known as

Metadata.

Database Management System:

Def. 1:

 ”A Database Management system (DBMS) is a collection of programs(software)that

allow users to store and access the data and work a database for easy manipulation

of data”.

Eg: dbase, oracle

Def. 2:

A database management system (DBMS) is a collection of programs that manages

the database structure and controls access to the data stored in the database.

Def. 3:

To implement a database and to manage its contents, you need a database

management system. The DBMS serves as the intermediary between the user and

the database.

MDBMS III-B.Sc 5 compiled by J. Kishore Kumar Reddy

 ROLE AND ADVANTAGES OF THE DBMS:

 The DBMS serves as the intermediary between the user and the database.

Having a DBMS between the end user‟s applications and the database offers some

important advantages.

First, the DBMS enables the data in the database to be shared among

multiple applications are users.

Second, the DBMS integrates the many different users‟ views of the data into

a single all-encompassing data repository. The DBMS helps make data

management more efficient and effective. In particular, a DBMS provides

advantages such as:

1. Program-Data Independence

2. Minimal Data Redundancy

3. Improved Data Consistency

4. Improved Data Sharing

5. Improved Data Quality

6. Increased Productivity of Application Development

7. Improved Data Accessibility and Responsiveness

8. Enforcement Standards

9. Reduced Program Maintenance

1. Program-Data Independence:

 The separation of data descriptions from the application programs that use

the data is called data independence. With the database approach, data

descriptions are stored in a central location called the repository. This property

of database systems allows an organization‟s data to change and evolve (within

limits) without changing the application programs that process the data.

2. Minimal Data Redundancy:

 The design goal with the database approach is that previously separate data

files are integrated into a single, logical structure. Each primary fact is recorded in

only one place in the database.

3. Improved Data Consistency:

 By eliminating (or controlling) data redundancy, we greatly reduce the

opportunities for inconsistency.

MDBMS III-B.Sc 6 compiled by J. Kishore Kumar Reddy

Ex: If a customer address is stored only once, we cannot disagree on the stored

values. Also, updating data values is greatly simplified when each value is stored in

one place only. Finally, we avoid the wasted storage space.

4. Improved Data Sharing:

 A database is designed as a shared corporate resource. Authorized internal

and external users are granted permission to use the database, and each user is

provided one or more user views to facilitate this use.

5. Improved Data Quality:

 The database approach provides a number of tools and processes to improve

data quality.

 1. Database designers can specify integrity constraints that are enforced by

the DBMS.

 2. One of the objectives of a data warehouse environment is to clean up

operational data before they are placed in the data warehouse.

6. Increased Productivity of Application Development:

 A major advantage of the database approach is that it greatly reduces the

cost and time for developing new business applications.

7. Improved Data Accessibility and Responsiveness:

 With a relational database, end users without programming experience can

often retrieve and display data.

 Ex: select * from student where student_id=999;

8. Enforcement Standards:

 When the database approach is implemented with full management support,

the database administration function should be granted single-point authority and

responsibility for establishing and enforcing data standards. These standards will

include naming conventions, data quality standards, and uniform procedures for

accessing, updating, and protecting data.

9. Reduced Program Maintenance:

 From the above all factors, as a result program maintenance can be

significantly reduced in a modern database environment.

MDBMS III-B.Sc 7 compiled by J. Kishore Kumar Reddy

TYPES OF DATABASES:

 A DBMS can support many different types of databases. Database can be

classified according to number of users, the database locations and the expected

type and extent of use.

TYPES OF DATABASES

According to According to According to

Number of users Database locations expected type and extent of use

Single Multi user Centralized Distributed Operational Data warehouse

User Database Database Database

I. ACCORDING TO NUMBER OF USERS

1. Personal database

“Personal databases are designed to support one user”. Personal databases

have long resided on personal computers (PCs), including laptops.

Simple database applications that store customer information and the details

of contacts with each customer can be used from a PC and easily transferred from

one device tom the other for backup and work purposes.

Personal databases are widely used because they can often improve personal

productivity. However, they entail a risk: The data cannot easily be shared with

other users.

2. Work group databases

 “A workgroup is a relatively small team of people who collaborate on the

same project or application or on a group of similar projects or applications”.

A work group typically comprises fewer than 25 persons. These persons might be

engaged with a construction project or with developing a new computer application.

A workgroup database is designed to support the collaborative efforts of such a

team.

1. Workgroup Database

2. Department

Database

3. Enterprise Database

Personal

Database

MDBMS III-B.Sc 8 compiled by J. Kishore Kumar Reddy

 The group needs a database that will track each item as it is developed and

allow the data to be easily shred by the team members.

 The method of sharing the data in this database is shown in the following

figure. Each member of the workgroup has a desktop computer and the computers

are linked by means of a local area network (LAN). The database is stored on a

central device called the database server, which is also connected to the network.

Thus each member of the workgroup has access to the shred data. Different types

of group members may have different user views of this shared database.

3. Department databases

 A department is a functional unit within an organization. Typical examples of

departments are personnel, marketing, manufacturing and accounting.

 “A department is generally larger than a workgroup (typically between 25

and 100 persons) and is responsible for a more diverse range of functions”.

 “Department databases are designed to support the various and activities of

a department”.

4. Enterprise databases

 When the database is used by the entire organization and supports many

users (more than 50 usually hundreds) across many departments, the database is

known as an enterprise database.

Type of
Database

No. of
Users

Typical architecture Typical size of
database

Personal 1 Desktop/laptop
computer

Megabytes

Workgroup 5-25 Client/server
(two-tier)

Megabytes-
Gigabytes

Department 25-100 Client/server
(three-tier)

Gigabytes

Enterprise >100 Client/server(Distributed
or parallel server

Gigabytes-
Terabytes

Work
Group

databa

se

Developer n Developer1 Project Manager Librarian

Local Area Network

Database server

MDBMS III-B.Sc 9 compiled by J. Kishore Kumar Reddy

II According to database locations

1. Centralized database

 Location might also be used to classify the database. For example, a

database that supports data located at a single site is called a centralized database.

2. Distributed database

A database that supports data distributed across several different sites is

called a distributed database.

III According to expected type and extent of use

1. Operational database

 A database that s designed primarily to support a company‟s day-to-day

operations is classified as an operational database (sometimes referred to as a

transactional or production database).

2. Data warehouse

A data warehouse focuses primarily on storing data used to generate

information required to make tactical or strategic decisions. Such decisions

typically require extensive “data massaging” (data manipulation) to extract

information to formulate pricing decisions, sales forecasts, market positioning, etc.

most decision support data are based on historical data obtained from operational

databases.

Additionally, the data warehouse can store data derived from many sources.

To make it easier to retrieve such data, the data warehouse structure is quite

different from that of a transaction oriented database.

WHY DATABASE DESIGN IS IMPORTANT:

 A good database - that is, a database that meets all user requirements - does

not just happen; it structure must be designed carefully. Even a good DBMS will

perform poorly with a badly designed database.

 Database design defines the database structure. A well-designed database

facilitates data management and generates accurate and valuable information. A

poorly designed database can lead to bad decision making and bad decision making

can lead to the failure of an organization.

MDBMS III-B.Sc 10 compiled by J. Kishore Kumar Reddy

 Proper database design requires the database designer to identify precisely

the database‟s expected use. Designing a transactional database emphasizes

accurate and consistent data and operational speed. The design of a data

warehouse database recognizes the use of historical and aggregated data.

Designing a database to be used in a centralized, single-user environment requires

a different approach from that used in the design of a distributed, multi-user

database.

HISTORICAL ROOTS: FILES AND FILE SYSTEMS

 In the recent past, a manager of almost any small organization was (and

sometimes still is) able to keep track of necessary data by using a manual file

system. Such a file system was traditionally composed of a collection of file folders

each properly tagged and kept in a filing cabinet. Organization of the data within

the file folders was determined by the data‟s expected use ideally.

 As long as a data collection was relatively small and an organization‟s

managers had few reporting requirements, the manual system served its role well

as a data repository. However, as organizations grew and as reporting

requirements became more complex, keeping track of data in a manual file system

became more difficult. In fact, finding and using data in growing collections of file

folders turned into such a time-consuming and cumbersome task that it became

unlikely that such data could generate useful information.

 Unfortunately, report generation from a manual file system can be slow and

cumbersome. Initially, the computer files within the file system sere similar to the

manual files. A simple example of a customer data file or a small insurance

company.

BASIC FILE TERMINOLOGY:

Data:

 “Raw” facts, such as a telephone number, a birth date, a customer name,

and a year-to-date (YTD) sales value. Data have little meaning unless they have

been organized in some logical manner. The smallest piece of data that can be

“recognized” by the computer is a single character, such as the letter A, the number

5, or a symbol such as /. A single character requires 1 byte to computer storage.

MDBMS III-B.Sc 11 compiled by J. Kishore Kumar Reddy

Field:

 A character or group of characters (alphabetic or numeric) that has specific

meaning. A field is used to define and store data.

Record:

 A logically connected set of one or more fields that describes a person, place,

or thing.

File:

 A collection of related records. For example, a file might contain data about

vendors of ROBCOR company, or a file might contain the records for the students

currently enrolled at S.V. University.

 Each file in the system used its own application programs to store, retrieve,

and modify data. And each file was owned by the individual or the department that

commissioned its creation.

 As the file system grew, the demand for the DP specialist‟s programming

skills grew even faster, and the DP specialist was authorized to hire additional

programmers. The size of the file system also required a larger, more complex

computer. The new computer and the additional programming staff caused the DP

specialist to spend less time programming and more time managing technical and

human resources. Therefore, the DP specialist‟s job evolved into that of a data

processing (DP) manager, who supervised a DP department. In spite of these

organizational changes, however, the DP department‟s primary activity remained

programming, and the DP manager inevitably spent much time as a supervising

senior programmer and program troubleshooter.

PROBLEMS WITH FILE SYSTEM DATA MANAGEMENT:

 The file system method of organizing and managing data was a definite

improvement over a manual system, and the file system served a useful purpose in

data management for over two decades, a very long time span in the computer era.

 THE LIMITATIONS OF FILE SYSTEM DATA MANAGEMENT are:

1) It requires extensive programming. There are no ad hoc query

capabilities. System administration can be complex and difficult.

MDBMS III-B.Sc 12 compiled by J. Kishore Kumar Reddy

 Another problem related to the need for extensive programming is that as

the number of files in the system expands, system administration becomes more

difficult. Each file must have its own file management system composed of

programs that allow the user to:

 Add, delete, and modify file data.

 List the file contents and generate reports.

 Making changes in an existing structure can be difficult in a file system

environment. For example, changing just one field in the original CUSTOMER file

requires a program that:

1. Opens the original file.

2. Reads a record from the original file.

3. Transforms the original data to conform to the new structure‟s storage

requirements.

4. Writers the transformed data into the new file structure.

5. Deletes the original file.

Even a simple file system of only 20 files requires 5 X 20 = 100 file

management programs. If each of the files is accessed by 10 different reporting

programs, an additional 20 X 10 = 200 programs must be written. Because ad hoc

queries are not possible, the file reporting programs can multiply quickly. And

because each department n the organization “owns” its data by creating its own

files, the number of files can multiply rapidly.

2) It is difficult to make changes to existing structures

 Any file structure change, no matter how minor, forces modifications in all of

the programs that use the data in that file. Modifications are likely to produce

errors (bugs), and additional time can be spent using a debugging process to find

those errors.

3) Security features are likely to be inadequate

 Another fault is that security features such as effective password protection,

the ability to lock out parts of files or parts of the system itself, and other measures

designed to safeguard data confidentiality are difficult to program and are,

therefore, often omitted in a file system environment. Even when an attempt is

made to improve system and data security, the security devices tend to be limited

in scope and effectiveness.

MDBMS III-B.Sc 13 compiled by J. Kishore Kumar Reddy

 Those limitations, in turn, lead to problems of structural and data

dependency and data redundancy.

4) Data Dependency

Any addition of data fields or any change in the data field that are defining

the file structure, will make it mandatory to change the maintenance program

accordingly.

Ex: Suppose the customer master file is used in both the order filling system

and the invoicing system. Suppose it is decided to change the customer address

field in the records in these files 30 to 40 characters. The file descriptions in each

program that is affected (up to five programs) would have to be modified. It is often

difficult even to locate all programs affected by such changes.

5) Data redundancy

Repetition of Data is known as data redundancy

 The organizational structure promotes the storage of the same basic data in

different locations. For example: the agent names and phone numbers occur in

both the CUSTOMER and the AGENT files. You need only one correct copy of the

agent names and phone numbers. Having them occur in more than one place

produces data redundancy. Data redundancy exists when the same data are stored

unnecessarily at different places.

The duplication is wasteful since it requires additional storage space and

increased effort to keep all files up to date. Unfortunately, duplicate data files often

result in loss of data integrity.

Uncontrolled data redundancy sets the stage for

6) Data inconsistency

 Data inconsistency exists when different and conflicting versions of the same

data appear in different places. For example, suppose you change an agent‟s phone

number or address in the agent file. If you forget to make corresponding changes

in the customer file, the files contain different data for the same agent. Reports will

yield inconsistent results depending on which version of the data is used.

7) Data Anomalies

 Any change in any field value must be correctly made in many places to

maintain data integrity. A Data Anomaly develops when all of the required changes

in the redundant data are not made successfully. The data anomalies found

commonly defined as follows: Update anomalies, Insertion anomalies, Deletion anomalies

MDBMS III-B.Sc 14 compiled by J. Kishore Kumar Reddy

Contrasting Database and File Systems

THE DATABASE SYSTEM ENVIRONMENT TYPES:

 The term database system refers to an organization of components that

define and regulate the collection, storage, management, and use of data within a

database environment. From a general management point of view, the database

system is composed of the five major parts shown in figure below

1. Hardware

2. Software

3. People

4. Procedures

5. Data

1. Hardware:

 Hardware refers to all of the system‟s physical devices; for example,

computers (microcomputers, mainframes, workstations, and servers), storage

devices, printers, network devices (hubs, switches, routers, fiber optics), and other

devices (automated teller machines, ID readers, etc.).

2. Software:

 Although the most readily identified software is the DBMS itself, to make the

database system function fully, three types of software are needed:

Accounting dept.

Accounts

 Sales dept.

Database

Employees

Customers

Sales

Inventory

Accounts

DBMS

A Database System

Personnel dept.

Sales dept.

Accounting dept.

A File System

 Inventory Sales Customers Employees

Personnel dept.

MDBMS III-B.Sc 15 compiled by J. Kishore Kumar Reddy

 Operating system software

 DBMS software, and

 Application programs and utilities.

 Operating system software managers all hardware components and

makes it possible for all other software to run on the computers.

Examples of operating system software include Microsoft Windows,

Linux, Mac OS, UNIX, and MVS.

 DBMS software manages the database within the database system.

Some examples of DBMS software include Microsoft Access and SQL

Server, Oracle Corporation‟s Oracle, and IBM‟s DB2.

 Application programs and utility software are used to access and

manipulate data in the DBMS and to manage the computer

environment in which data access and manipulation take place.

Application programs are most commonly used to access data found

within the database to generate reports, tabulations, and other

information to facilitate decision making. Utilities are the software

tools used to help manage the database system‟s computer

components.

3. People:

 This component includes all users of the database system. On the basis of

primary job functions, five types of users can be identified in a database system:

systems administrators, database administrators, database designers, systems

analysts and programmers, and end users.

 Systems administrators oversee the database system‟s general

operations.

 Database administrators, also known as DBAs, manage the DBMS and

ensure that the database is functioning properly.

 Database designers design the database structure. They are, in effect,

the database architects. If the database design is poor, even the best

application programmers and the most dedicated DBAs cannot produce

a useful database environment. Because organizations strive to

optimize their data resources. The database designer‟s job description

has expended to cover new dimensions and growing responsibilities.

MDBMS III-B.Sc 16 compiled by J. Kishore Kumar Reddy

 Systems analysts and programmers design and implement the

application programs. They design and create the data entry screens,

reports, and procedures through which end users access and

manipulate the database‟s data.

 End users are the people who use the application programs to run the

organization‟s daily operations. For example, salesclerks, supervisors,

managers, and directors are all classified as end users.

4. Procedures:

 Procedures are the instructions and rules that govern the design and use of

the database system. Procedures play an important role in a company because

they enforce the standards by which business is conducted within the organization

and with customers.

5. Data:

 The word data covers the collection of facts stored in the database.

DBMS FUNCTIONS:

 A DBMS performs several important functions that guarantee the integrity

and consistency of the data in the database. They include

1. Data dictionary management

2. Data storage management

3. Data transformation and presentation

4. Security management

5. Multiuser access control

6. Backup and recovery management

7. Data integrity management

8. Database access languages and application programming interfaces, and

9. Database communication interfaces.

1.Data dictionary management

 The DBMS stores definitions of the data elements and their relationships in a

data dictionary. In turn, all programs that access the data in the database work

MDBMS III-B.Sc 17 compiled by J. Kishore Kumar Reddy

 through the DBMS. Additionally, any changes made in a database structure are

automatically recorded in the data dictionary, thereby freeing you from having to

modify all of the programs that access the changed structure.

2. Data storage management

 A modern DBMS system provides storage not only for the data, but also for

related data entry forms or screen definitions, report definitions, data validation

rules, procedural code, structures to handle video and picture formals, etc. Data

storage management is also important for database performance tuning.

Performance tuning relates to the activities that make the database perform

more efficiently in terms of storage and access speed. Although the user sees the

database as a single data storage unit, the DBMS actually stores the database in

multiple physical data files. Such data files may even be stored on different storage

media.

3. Data transformation and presentation

 The DBMS transforms entered data to conform to required data structures.

The DBMS relieves you of the chore of making a distinction between the logical data

format and the physical data format. For example, imagine an enterprise database

used by a multinational company. An end user in England would expect to enter

data such as July 11, 2006 as “11/07/2006.” In contract, the same date would be

entered in the United States as “07/11/2006.” Regardless of the data presentation

format, the DBMS must manage the date in the proper format for each country.

4. Security management

 The DBMS creates a security system that enforces user security and data

privacy Security rules determine which users can access the database, which data

items each user can access, and which data operations (read, add, delete, or

modify) the user can perform. This is especially important in multi-user database

systems where many users access the database simultaneously.

5. Multi-user access control

 To provide data integrity and data consistency, the DBMS uses sophisticated

algorithms to ensure that multiple users can access the database concurrently

without compromising the integrity of the database.

MDBMS III-B.Sc 18 compiled by J. Kishore Kumar Reddy

6. Backup and recovery management

 The DBMS provides backup and data recovery to ensure data safety and

integrity. Current DBMS systems provide special utilities that allow the DBA to

perform routine and special backup and restore procedures. Recovery management

deals with the recovery of the database after a failure, such as a bad sector in the

disk or a power failure. Such capability is critical to preserving the database‟s

integrity.

7. Data integrity management

 The DBMS promotes and enforces integrity rules, thus minimizing data

redundancy and maximizing data consistency. The data relationships stored in the

data dictionary are used to enforce data integrity.

8. Database access languages and application programming interfaces

 The DBMS provides data access through a query language. A query

language is a nonprocedural language – one that lets the user specify what must

be done without having to specify how it is to be done. The DBMS may also provide

data access to programmers via procedural (3GL) languages such as COBOL, C,

PACSAL, Visual Basic, and C++. The DBMS also provides administrative utilities

used by the DBA and the database designer to create, implement, monitor, and

maintain the database. Structured Query Language (SQL) is the de factor query

language and data access standard supported by the majority of DBMS vendors.

 9. Database communication interfaces

 Current-generation DBMSs accept end-user requests via multiple, different

network environments. The DBMS might provide access to the database via the

internet through the use of Web browsers such as Mozilla Firefox or Microsoft

Internet Explorer. In this environment, communications can be accomplished in

several ways.

 End users can generate answers to queries by filling in screen forms

through their preferred Web browser.

 The DBMS can automatically publish predefined reports on a Web site.

 The DBMS can cannot to third-party systems to distribute information

via e-mail or other productivity applications.

MDBMS III-B.Sc 19 compiled by J. Kishore Kumar Reddy

MANAGING THE DATABASE SYSTEM:

 Although the database system yield considerable advantages over previous

data management approaches, database systems do impose significant costs. For

example:

Increased costs:

 Database systems require sophisticated hardware and software and highly

skilled personnel. The cost of maintaining the hardware, software, and personnel

required to operate and manage a database system can be substantial.

Management complexity:

 Database systems interface with many different technologies and have a

significant impact on a company‟s resources and culture. The changes introduced

by the adoption of a database system must be properly managed to ensure that

they help advanced by they adoption of a database system databases systems hold

crucial company data that are accessed from multiple sources, security issues must

be assessed constantly.

Maintaining currency:

 To maximize the efficiency of the database system, you must keep your

system current. Therefore, you must perform frequent updates and apply the latest

patches and security measures to all components. Because database technology

advances rapidly, personnel training cots tend to be significant.

Vendor dependence:

 Given the heavy investment in technology and personnel training, companies

may be reluctant to change database vendors. As a consequence, vendors are less

likely to offer pricing point advantages to existing customers and those customers

may be limited in their choice of database system components.

MDBMS III-B.Sc 20 compiled by J. Kishore Kumar Reddy

CHAPTER-II

DATA MODELS

Importance of Data Models

 A data model is a (relatively) simple abstraction of a complex real-world data

environment. Database designers use data models to communicate with

applications programmers and end users. The basic data-modeling components are

entities, attributes, relationships, and constraints.

DATA MODEL BASIC BUILDING BLOCKS

 The basic building blocks of all data models are entities, attributes,

relationships, and constraints. An Entity is anything (a person, a place, a thing, or

an event) about which data are to be collected and stored. An entity represents a

particular type of object in the real world.

 An attribute is a characteristic of an entity. For example, a CUSTOMER

entity would be described by attributes such as customer last name, customer first

name, customer phone, customer address, and customer credit limit. Attributes are

the equivalent of fields in file systems.

 A relationship describes an association among entities. For example, a

relationship exists between customers and agents that can be described as follows:

an agent can serve many customers, and each customer may be served by one

agent. Data models use four types of relationships: one-to-many, many-to-one,

many-to-many, and one-to-one. Database designers usually used the shorthand

notations 1: M, M: 1, M: M, and 1:1, respectively.

BUSINESS RULES

 When database designers go about selecting or determining the entities,

attributes, and relationships that will be used to build a data model, they may start

by gaining a thorough understanding of what types of data are in an organization,

how the data are used, and in what time frames they are used.

 From a database point of view, the collection of data becomes meaningful only

when it reflects properly defined business rules.

A business rule is a brief, precise, and unambiguous description of a

policy, procedure, or principle within a specific organization.

MDBMS III-B.Sc 21 compiled by J. Kishore Kumar Reddy

 Business rules, derived from a detailed description of an organization‟s

operations, help to create and enforce actions within that organization‟s

environment. Business rules must be rendered in writing and updated to reflect any

change in the organization‟s operational environment.

 Properly written business rules are used to define entities, attributes,

relationships, and constraints.

To be effective, business rules must be easy to understand and widely

disseminated to ensure that every person in the organization shares a common

interpretation of the rules. Business rules describe, in simple language, the main

and distinguishing characteristics of the data as viewed by the company. Examples

of business rules are as follows:

 A customer may generate many invoices.

 An invoice is generated by only one customer.

 A training session cannot be scheduled for few then 10 employees or

for more than 30 employees.

Note that those business rules establish entities, relationships, and

constraints. For example, the first two business rules establish two entities,

CUSTOMER and INVOCICE, and a 1:M relationship between those two entities. The

third business rule establishes a constraint: no fewer then 10 people and no more

than 30 people; two entities, EMPLOYEE and TRAINING; and a relationship between

EMPLOYEE and TRAINING.

DISCOVERING BUSINESS RULES

The process of identifying and documenting business rules is essential to database

design for several reasons:

 They help standardize the company‟s view of data.

 They can be a communications tool between users and designers.

 They allow the designer to understand the nature, role, and scope of

the data.

 They allow the designer to understand business processes.

 They allow the designer to develop appropriate relationship

participation rules and constraints and to create an accurate data

model.

MDBMS III-B.Sc 22 compiled by J. Kishore Kumar Reddy

DATA MODELS:

 A data model is a set of concepts that can be used to describe the data such

as data types and length, relationships and consistency constraints. Data models

provide necessary data abstraction hiding the details of data storage. That is, the

main purpose of a data model is to provide a level of abstraction. A data model

often includes a set of operations for retrieval and updates and a set of valid user-

defined operations that are allows.

 Implementation of a database approach requires a detailed study of

organization‟s data and information requirements, followed by creating a model

depicting the data used by the application and its relationships. A data model is a

blueprint of the data and its relationships used by the system. The plan created by

an architect for a building is an example of a blue print.

BLUE PRINT OF THE BUILDING BUILDING

 DATA MODEL DATABASE

The reasons for developing a data model are as follows:

 Models are abstractions that portray the essentials of a complex

problem or structure by filtering out non-essential details, thus making

the problem easier to understand.

 Models help us visualize, understand, organize, complex things thereby

promoting cleaner designs and making creation easy.

A data model being an abstraction helps in giving a big picture of how the

data and information requirements would be organized thus making it easy to

eliminate unnecessarily duplicated data and thereby promoting consistency and

accuracy of data.

There are basically three types of data models:

MDBMS III-B.Sc 23 compiled by J. Kishore Kumar Reddy

1. Record-based logical models,

2. Object-based logical models

3. Physical models.

1. Record-based Logical Models:

 Record-based logical model is based on the notion of data stored as a set of

records. Each record consists of a set of fields and each field is of fixed length.

Fixed length records reduce the implementation part at the physical level. There

are mainly three types of models namely, hierarchical data model, network data

model and relational data model. In the hierarchical and network data model, the

data is represented in the form of records and the relationships are represented in

the form of links (or pointers). In the relational data model, both data and

relationships are represented in the form of tables, which consists of a set of

records.

(i) Hierarchical Model:

 The hierarchical database management system is the oldest among the

database architectures. A hierarchical DBMS assumed hierarchical relationships

between data, that is, parent – child relationship. In this model, data is arranged in

a top-down structure that resembles an inverted tree or genealogy chart.

 Data is mapped to different nodes of this tree, and they are related in

nested, one-to-many relationships. Data at the top node is called the root, data in

the nodes at the bottom most layer are called leaves, and data in the nodes at the

intermediate levels have one parent node, and one or several child nodes. The

hierarchical database management system is best applied when the conceptual data

model also resembles a tree, and when most data access begins at the root. An

example of Hierarchical database management system is IMS (Information

Management System) DBMS.

ii) Network Data Model:

MDBMS III-B.Sc 24 compiled by J. Kishore Kumar Reddy

 The network data model is formally defined in 1971 in the Conference on

Data System Languages (CODASYL).

 In the network database management system, data is mapped to a complex

network of nodes. Although very flexible in-terms of allowing any form of data

implementation (a hierarchy is a special case of a network) usually using pointers,

this creates significant overhead in storage space and maintenance time. Through

network database management system provides fast performance, its design is

highly complex (requiring significant programming and database design knowledge

and skills), and thereby difficult to change and maintain to accommodate changing

data requirements. The network data model permits modeling many-to-many

relationship. An example of network database management system is IDMS

(Integrated Database Management System)

 Hierarchical and network models are based on traversing data links to

process a database.

(iii) Relational Data Model:

 The Relational Database Management Systems are relatively new form

historical perspective and built from theoretical considerations of data structures by

E.F.Codd.

 The relational database management system unlike the Hierarchical or

network database management systems does not involve any links. It represents

data and relationships among data by a collection of table, each of which had a

number of columns with unique names. The concept of tables and rows and

columns is extremely simple and easy to understand. Complex network diagrams

used with the hierarchical and network databases are not used with a relational

database.

 A relational database provides a much higher degree of data independence

than hierarchical and network databases. In relational databases, tables are not

hard-linked to one another. Columns can be added to tables, tables can be added

MDBMS III-B.Sc 25 compiled by J. Kishore Kumar Reddy

to the database and new data relationship can be added with little or no

restructuring of the tables.

CustID Name Location City

1021 Raja Sekhar Koti Hyderabad

1022 Praneeth Dilshuk Nagar Hyderabad

1023 Ashish Kotha Pet Guntur

1024 Geetha Musab Tank Hyderabad

1112 Guna Jubli Hills Hyderabad

 Main difference between relational and non-relational (network and

hierarchical) data models.

Non Relational Relational

Relationships maintained by pointers Relationship defined by data content

Access to data through predefined paths Any data item is always directly addressable

Structural changes very difficult, through it is

not impossible.

Very flexible at logical level

Inherently complicated data structures Conceptually simple data structures

Ordering of records significant No significance in order of rows

Accessing programs require procedural and

navigational capability

No such restrictions Supported and

maintained by standard set of operations.

 The relational data model has established itself as the primary data model

best suited for the commercial data processing applications. Examples of RDBMS

are Oracle, Sybase, Informix, MS SQL Server, DB2 and PostgreSQL.

2. Object-based Logical Models:

 In object-based logical model database is structured in the form of objects of

several types. It allows specifying data constraints separately. These models are

used in describing data at the conceptual and view levels of abstraction. Some of

the most widely known data models that fall under this category are: Entity-

Relationship Data Model and Object Oriented Data Model.

(i) Entity-Relationship Model:

 The main constructs of the ER model are entities and their attributes, and the

relationships between the entities.

MDBMS III-B.Sc 26 compiled by J. Kishore Kumar Reddy

(ii) Object –Oriented Model:

 Object –oriented model consists of objects. Each object contains attributes

and methods, which operate on the attributes. Each attribute value stored in the

form of variables and methods are written as a block of code. Two or more objects

communicate each other using object methods. Each object is identified with a

unique identifier to distinguish with other objects.

3. Physical Data Model:

 Physical data model captures the data at the lowest level that are used for

database-system implementation. These concepts are mainly meant for computer

specialists, but not for the end users. Here data is represented as record formats,

record orderings and access paths. Examples of Physical data models are Unifying

model and frame-memory model.

MDBMS III-B.Sc 27 compiled by J. Kishore Kumar Reddy

CHAPTER-III

THE RELATION DATA MODEL

LOGICAL VIEW OF DATA

 The relational data model changed all of that by allowing the designer to

focus on the logical representation of the data and its relationships, rather than on

the physical storage details. To use an automotive analogy, the relational database

uses an automatic transmission to relieve you of the need to manipulate clutch

pedals and gearshifts. In short, the relational model enables you to view data

logically rather than physically.

 The logical view of the relational database is facilitated by the creation of

data relationships based on a logical construct known as a table.

RELATIONAL DATAMODEL:

E.F. Codd first introduces the relational data model in 1970.

Basic Definitions:

 “The relational data model represents data in the form of tables.”

The relational model is based on mathematical theory and therefore has a solid

theoretical foundation.

The relational data model consists of the following three components

1. Data Structure: Data are organized in the form of tables with rows and

columns.

2. Data manipulation: Powerful operations (using the SQL language) are

used to manipulate data stores in the relations.

3. Data Integrity: Facilities are included to specify business rules that

maintain the integrity of data when they are manipulated.

RDBMS Terminology:

Formal Relational term Informal equivalent

Relation Table

Tuple Row, Record

Attribute Column, Field

Cardinality No. of Rows

Degree No. of columns

Domain Set of legal values

Primary key Unique identification

MDBMS III-B.Sc 28 compiled by J. Kishore Kumar Reddy

Relational Data Structure:

 “A Relation is a named, two-dimensional table of data”. Each relation

(or table) consists of a set of named columns and an arbitrary number of unnamed

rows.

Example: The following example shows a relation named EMPLOYEE1. This relation

contains the following attributes describing employees:

 Emp-ID, Name, Dept_name, and salary.

Emp_ID Name Dept_Name Slaary

100

201

104

106

166

Uday

Vishnu

Tarun

Seenu

Rani

Accounting

Marketing

Finance

Marketing

Info systems

55000

45000

65000

35000

34000

 Fig(a) EMPLOYEE1 relation with sample data

 We can express the structure of a relation by a shorthand notation in which

the name of the relation is followed (in parentheses) by the names of the attributes

in that relation.

For EMPLOYEE1 we would have

EMPLOYEE1 (Emp_ID, Name, Dept_Name, Salary)

Properties of Relations or Characteristics of Relational Table

 We have defined relations as two-dimentional tables of data. However, not

all tables are relations. Relations have several properties that distinguish them

from non-relational tables. We summarize these properties below.

1. A table is perceived as a two-dimensional structure composed of rows and

columns.

2. Each relation (or table) in a database has a unique name.

3. An entry at the intersection of each row and column is automatic (single

valued). There can be no multi-valued attributes in a relation.

4. Each row is unique; no two rows in a relation are identical.

5. Each attribute (or column) within a table has a unique name.

6. The sequence of columns (left or right) is insignificant. The columns of a

relation can be interchanged without changing the meaning or use of the

relation.

MDBMS III-B.Sc 29 compiled by J. Kishore Kumar Reddy

7. The sequence of rows (top to bottom) is insignificant. As with column, the

rows of a relation may be interchanged or stored in any sequence.

8. All values in a column must conform to the same data format. For

example, if the attribute is assigned an integer data format, all values in

the column representing that attribute must be integers.

Relational database Keys

 A key consists of one or more attributes that determine other attributes. We

must able to store and retrieve a row of data in a relation based on the data values

in that row. To achieve this goal, every relation must have some type of keys.

 1. SUPER KEY

 2. CANDIDATE KEY

 3. PRIMARY KEY

 4. SECONDARY KEY

 5. FOREIGN KEY

1. Super Key:

An attribute (or combination of attributes) that uniquely identifies each row in a

table.

2. Candidate Key:

A minimal super key that is one that does not contain a subset of attributes that is

itself a super key. (OR) A candidate key can be described as a super key

without redundancies, that is, a minimal super key.

Example: Using this distinction, note that the composite key.

STU_NUM, STU_LNAME

is a super key, but it is not candidate key because STU_NUM by itself is a candidate

key! The combination STU_LNAME, STU_FNAME, STU_INT, STU_PHONE might also

be a candidate key, as long as you discount the possibility that two students share

the same last name, first name, initial, and phone number.

3. Primary Key:

 A primary key is an attribute (or combination of attributes) that “uniquely identifies

each row in a relation”. We designate a primary key by underlining the attribute

name.

Example: The primary key for the relation EMPLOYEE1 is Emp_ID.

In shorthand notation express this relation as follows

EMPLOYEE1 (Emp_ID, Name, Dept_Name, Salary)

MDBMS III-B.Sc 30 compiled by J. Kishore Kumar Reddy

4. Secondary (OR) Composite Key:

A composite key is a primary key that consists of more than one attribute. (OR) A

key that is used strictly for data retrieval purposes.

Example: A customer is not likely to know his or her customer number (primary

key), but the combination of last name, first name, middle initial, and telephone

number is likely to make a match to the appropriate table row.

5. Foreign Key:

We must represent the relationship between TWO tables or Relations. This is

accomplished through the use of foreign keys.

 “A foreign key is an attribute in a relation of a database that serves as the

primary key of another relation in the same database.”

Example: Consider the relations EMPLOYEE1 and DEPARTMENT

EMPLOYEE1 (Emp_ID, Name, Dept_Name, Salary)

DEPARTMENT (Dept Name, Location, Fax)

 This attribute Dept_Name is a foreign key in EMPLOYEE1. It allows a user to

associate any employee with the department to which he or she is assigned. The

foreign key represented in a notation by using a “Dashed Underline”.

INTEGRITY CONSTRAINTS (or) RULES:

 The relational data model includes several types of constraints, or business

rules, the purpose is to facilitate maintaining the accuracy and integrity of data in

the database.

The major types of integrity constraints are

1. Domain Constraint

2. Entity Integrity

3. Referential Integrity

4. Action Assertion

1. Domain constraint:

All of the values that appear in a column of a relation must be taken from the

same domain. A domain usually consists of the following components:

 Domain Name, Meaning, Data type, Size (or length), and allowable values or

allowable range.

 The following table shows the domain definitions for the domains associated

with the attributes.

MDBMS III-B.Sc 31 compiled by J. Kishore Kumar Reddy

Table: Domain Definitions for selected attributes:

Attribute Domain Name Description Domain

Customeer_ID

Cistomer_Name

Customer_Address

Customer_City

Customer_State

Customer_Zip

Order_ID

Order_date

Product_ID

Product_Description

Product_Finish

Standard_Price

On_Hand

Customer_Ids

Customer_Names

Customer_Addresses

Cities

States

Zips

Order_IDs

Order_Date

Product_IDs

Product_Descriptions

Product_Finishes

Unit_Price

On_Hands

Set all possible customer Id

Set of all possible customer names

Set of all possible customer addresses

Set of all possible cities

Set of all possible states

Set of all possible zip codes

Set of all possible order IDs

Set of all possible order dates

Set of all possible product IDs

Set of all possible product descriptions

Set of all possible product finishes

Set of all possible unit prices

Set of all possible on hands

Character: Size 5

Character: Size 25

Character: Size 30

Character: Size 20

Character: Size 2

Character: Size 10

Character: Size 5

Character: Size mm-dd-yy

Character: Size 5

Character: Size 25

Character: Size 12

Character: Size 6 digits

Character: Size 3 digits

2. Entity Integrity:

The entity integrity rule is designed to assure that “every relation has a

primary key” and that the data values for that primary key are all valid. In

particulars, it guarantees that every primary key attribute is not null.

The entity integrity rule states the following:

No primary key attribute (or component of a primary key attribute) may be null.

3. Referential Integrity:

In the relational data model, associations between tables are defined through

the use of foreign keys.

Example: The association between the CUSTOMER and ORDER tables is defined by

including the Customer_ID attribute as a foreign key in ORDER. CUSTOMER

(Customer_ID, Customer_Name, Address, City, State, Zip) ORDER (Order_ID,

Order_Date, Customer_ID).

A referential integrity constraint is a rule that maintains consistency among

the rows of two relations. The rule states that if there is a foreign key in one

relation, either each foreign key value must match a primary key value in another

relation or the foreign key value must be null.

MDBMS III-B.Sc 32 compiled by J. Kishore Kumar Reddy

4. Action Assertions:

Business rules and introduced a new category of business rules we called

action assertions.

Example: A typical action assertion might state the following: “A person may

purchase a ticket for the all-star game only if that person is a season – ticket

holder.”

RELATIONAL SET OPERATORS:

 Relational algebra defines the theoretical way of manipulating table contents

using the eight relational operators

1. SELECT 5. UNION

2. PROJECT 6. DIFFERENCE

3. JOIN 7. PRODUCT

4. INTERSECT 8. DIVIDE

1. UNION

Union combines all rows from two tables, excluding duplicate rows. The

tables must have the same attribute characteristics (the columns and domains

must be identical) to be used in the UNION. When two or more tables share the

same number of columns, when the columns have the same names, and when

they share the same (for compatible) domains, they are said to be union-

compatible.

 P_CODE P_DESCRIPT PRICE P_CODE P_DESCRIPT PRICE

 ► 123456 Flashlight
 $
5.26 ► 345678 Microwave $ 160.00

 123457 Lamp
 $
25.15 UNION 345679 Dishwasher $ 500.00

 123458 Box Fan
 $
10.99

 123455 gv battery
 $
1.92

 254467 100w buib
 $
1.47 YIELDS

 311452 powerdrill $ 34.99

 P_CODE P_DESCRIPT PRICE

 ► 123456 Flashlight
 $
5.26

 123457 Lamp
 $
25.15

 123458 Box Fan
 $
10.99

 213345 gv battery
 $
1.92

 254467 100w buib
 $
1.47

 311452 powerdrill $ 34.99

 345678 Microwave $ 160.00

 345679 Dishwasher $ 500.00

MDBMS III-B.Sc 33 compiled by J. Kishore Kumar Reddy

2. INTERSECT

Intersect yields only the rows that appear in both tables.

Note: you cannot use INTERSECT if one of the attributes in numeric and one is

character-based.

 F_NAME F_NAME F_NAME
► GEORGE INTERSECT ► JANE YIELDS ► JANE

 JANE WILLIAMS JORGE

 ELAIN JORGE

 WILFRED DENNIS

 JORGE

3. DIFFERENCE

Difference yields all rows in one table that are not found in the other table, that

is, subtracts one table from the other.

 F_NAME F_NAME F_NAME
► GEORGE DIFFERENCE ► JANE YIELDS ► GEORGE

 JANE WILLIAMS ELAINE

 ELAIN JORGE WILFRED

 WILFRED DENNIS

 JORGE

4. PRODUCT

Product yields all possible pairs of rows from two tables – also known as the

Cartesian product. Therefore if one table has six rows and the other table has

three rows, the PRODUCT yields a list composed of 6 X 3 = 18 rows.

 P_CODE P_DESCRIPT PRICE STORE AISLE SHELF

► 123456 Flashlight
 $
5.26 ► 23 W 5

 123457 Lamp
 $
25.15 PRODUCT 24 K 9

 123458 Box Fan
 $
10.99 25 Z 6

 123455 gv battery
 $
1.92

 254467 100w buib
 $
1.47

 311452 Powerdrill
 $
34.99 yields

 P_CODE P_DESCRIPT PRICE STORE AISLE SHELF

 ► 123456 Flashlight
 $
5.26 23 W 5

 123456 Flashlight
 $
5.26 24 K 9

 123456 Flashlight
 $
5.26 25 Z 6

 123457 Lamp
 $
25.15 23 W 5

 123457 Lamp
 $
25.15 24 K 9

 123457 Lamp
 $
25.15 25 Z 6

 123458 Box Fan $ 23 W 5

MDBMS III-B.Sc 34 compiled by J. Kishore Kumar Reddy

10.99

 123458 Box Fan
 $
10.99 24 K 9

 123458 Box Fan
 $
10.99 25 Z 6

 213345 gv battery
 $
1.92 23 W 5

 213345 gv battery
 $
1.92 24 K 9

 213345 gv battery
 $
1.92 25 Z 6

 311452 powerdrill
 $
34.99 23 W 5

 311452 powerdrill
 $
34.99 24 K 9

 311452 powerdrill
 $
34.99 25 Z 6

 254467 100w buib
 $
1.47 23 W 5

 254467 100w buib
 $
1.47 24 K 9

 254467 100w buib
 $
1.47 25 Z 6

5. SELECT

Select also known as RESTRICT, yield values for all rows found in a table. SELECT

can be used to list all of the row values, or it can yield only those row values that

match a specified criterion. In other words, SELECT yield a horizontal subset of a

table.

ORIGINAL TABLE NEW TABLE OR LIST

 P_CODE P_DESCRIPT PRICE P_CODE P_DESCRIPT PRICE

► 123456 Flashlight $ 5.26

SELECT ALL yields

► 123456 Flashlight $ 5.26

 123457 Lamp $ 25.15 123457 Lamp $ 25.15

 123458 Box Fan $ 10.99 123458 Box Fan $ 10.99

 123455 gv battery $ 1.92 123455 gv battery $ 1.92

 254467 100w buib $ 1.47 254467 100w buib $ 1.47

 311452 powerdrill $ 34.99 311452 powerdrill $ 34.99

 P_CODE P_DESCRIPT PRICE

SELECT only PRICE less than $2.00 yields

► 123455 gv battery $ 1.92

 254467 100w buib $ 1.47

 P_CODE P_DESCRIPT PRICE

SELECT only P_CODE = 311452 yields

► 311452 powerdrill
 $
34.99

MDBMS III-B.Sc 35 compiled by J. Kishore Kumar Reddy

6. PROJECT

Project yields all values for selected attributes. In other words, PROJECT

yields a vertical subset of a table.

ORIGINAL TABLE NEW TABLE OR LIST

 P_CODE P_DESCRIPT PRICE PRICE

► 123456 Flashlight $ 5.26 ► $ 5.26

 123457 Lamp $ 25.15

PROJECT PRICE yield

 $ 25.15

 123458 Box Fan $ 10.99 $ 10.99

 123455 gv battery $ 1.92 $ 1.92

 254467 100w buib $ 1.47 $ 1.47

 311452 powerdrill $ 34.99 $ 34.99

 P_DESCRIPT PRICE

PROJECT P_DESCRIPT and PRICE yields

► Flashlight
 $
5.26

 Lamp
 $
25.15

 Box Fan
 $
10.99

 gv battery
 $
1.92

 100w buib
 $
1.47

 powerdrill
 $
34.99

 P_DESCRIPT PRICE

PROJECT P_CODE and PRICE yields

► 123456
 $
5.26

 123457
 $
25.15

 123458
 $
10.99

 123455
 $
1.92

 254467
 $
1.47

 311452
 $
34.99

7. JOIN

Join allows information to be combined from two or more tables. JOIN is the

real power behind the relational database, allowing the use of independent tables

linked by common attributes.

MDBMS III-B.Sc 36 compiled by J. Kishore Kumar Reddy

 A natural join links tables by selecting only the rows with common values in

their common attribute. A natural join is the result of a three-stage process.

Table name:CUSTOMER Tble name:AGENT

 CUS_CODE CUS_LNAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE

► 1132445 Walker 32145 231 ► 125 6152439887

 1217782 Adares 32145 125 167 6153426778

 1312243 Rakowski 34129 167 231 6152431124

 1321242 Rodriguez 37134 125 333 9041234445

 1542311 Smithson 37134 421

 1657399 Vanloo 32145 231

a. First, a PRODUCT of the tables is created, yielding the results shown in below

figure.

CUS_CODE CUS_LNAME CUS_ZIP CUSTOMER.AGENT_CODE AGENT.AGENT_CODE AGENT_PHONE

 ► 1132445 Walker 32145 231 125 6152439887

 1132445 Walker 32145 231 167 6153426778

 1132445 Walker 32145 231 231 6152431124

 1132445 Walker 32145 231 333 9041234445

 1217782 Adares 32145 125 125 6152439887

 1217782 Adares 32145 125 167 6153426778

 1217782 Adares 32145 125 231 6152431124

 1217782 Adares 32145 125 333 9041234445

 1312243 Rakowski 34129 167 125 6152439887

 1312243 Rakowski 34129 167 167 6153426778

 1312243 Rakowski 34129 167 231 6152431124

 1312243 Rakowski 34129 167 333 9041234445

 1321242 Rodriguez 37134 125 125 6152439887

 1321242 Rodriguez 37134 125 167 6153426778

 1321242 Rodriguez 37134 125 231 6152431124

 1321242 Rodriguez 37134 125 333 9041234445

 1542311 Smithson 37134 421 125 6152439887

 1542311 Smithson 37134 421 167 6153426778

 1542311 Smithson 37134 421 231 6152431124

 1542311 Smithson 37134 421 333 9041234445

 1657399 Vanloo 32145 231 125 6152439887

 1657399 Vanloo 32145 231 167 6153426778

 1657399 Vanloo 32145 231 231 6152431124

 1657399 Vanloo 32145 231 333 9041234445

b. A SELECT is performed on the output of Step a to yield only the rows for which

the AGENT_CODE values are equal. The common column(s) is (are) refereed to as

the join column(s). Step b yields the results shown in below figure.

MDBMS III-B.Sc 37 compiled by J. Kishore Kumar Reddy

CUS_CODE CUS_LNAME CUS_ZIP CUSTOMER.AGENT_CODE AGENT.AGENT_CODE AGENT_PHONE

► 1217782 Adares 32145 125 125 6152439887

 1312243 Rakowski 34129 167 125 6152439887

 1321242 Rodriguez 37134 125 167 6153426778

 1132445 Walker 32145 231 231 6152431124

 1657399 Vanloo 32145 231 231 6152431124

c. A PROJECT is performed on the results of Step b to yield a single copy of each

attribute, thereby eliminating duplicate columns. Step c yields the output shown in

below figure.

CUS_CODE CUS_LNAME CUS_ZIP AGENT.AGENT_CODE AGENT_PHONE

► 1217782 Adares 32145 125 6152439887

 1312243 Rakowski 34129 125 6152439887

 1321242 Rodriguez 37134 167 6153426778

 1132445 Walker 32145 231 6152431124

 1657399 Vanloo 32145 231 6152431124

Equi join:

 Another form of join, known as equijoin, links tables on the basis of an

equality condition that compares specified columns of each table. The outcome of

the equijoin does not eliminate duplicate column, and the condition or criterion used

to join the tables must be explicitly defined. The equijoin takes its name from the

equality comparison operator (=) used in the condition. If any other comparison

operator is used, the join is called a theat join.

LEFT OUTER JOIN & RIGHT OUTER JOIN:

 A left outer join yields all of the rows in the CUSTOMER table, including

those that do not have a matching value in the AGENT table.

CUS_CODE CUS_LNAME CUS_ZIP AGENT.AGENT_CODE AGENT_PHONE

► 1217782 Adares 32145 125 6152439887

 1312243 Rakowski 34129 125 6152439887

 1321242 Rodriguez 37134 167 6153426778

 1132445 Walker 32145 231 6152431124

 1657399 Vanloo 32145 231 6152431124

 1542311 Smithson 37134 421

MDBMS III-B.Sc 38 compiled by J. Kishore Kumar Reddy

 A right outer join yields all of the rows in the AGENT table, including those

that do not have matching values in the CUSTOMER table.

CUS_CODE CUS_LNAME CUS_ZIP AGENT.AGENT_CODE AGENT_PHONE

► 1217782 Adares 32145 125 6152439887

 1312243 Rakowski 34129 125 6152439887

 1321242 Rodriguez 37134 167 6153426778

 1132445 Walker 32145 231 6152431124

 1657399 Vanloo 32145 231 6152431124

 333 9041234445

8. DIVIDE

Divide requires the use of one single-column table and one 2-column table.

 a. Table 1 is “divided” by the table 2 to produce table 3. tables 1 and 2 both

contain the column CODE but do not share LOC.

 b. To be included in the resulting Table 3, a value in the unshared column

(LOC) must be associated (in the dividing Table2) with every value in Table 1.

 c. The only value associated with both A and B is 5.

 CODE LOC CODE LOC

► A 5 ► A yields ► 5

 A 9 B

 A 4

 B 5

 B 3

 C 6

 D 7

 D 8

 E 8

The Data Dictionary and the system catalog

The data dictionary provides a detailed accounting of all tables found within

the user/designer-created database. Thus, the data dictionary contains at least all

of the attribute names and characteristics for each table in the system. In short,

the data dictionary contains metadata – data about data.

 The data dictionary is sometimes described as “the database designer‟s

database” because it records the design decisions about tables and their structures.

TAB

LE

ATTRIBUTE

CONTENTS

TYPE

FORMAT

RANGE

REQUI-

FK

OR

FK

REFEREN-

MDBMS III-B.Sc 39 compiled by J. Kishore Kumar Reddy

INDEXES

 The index (in either a manual or a computer system) points you to the book‟s

location, thereby making retrieval of the book a quick and simple matter. An index

is an orderly arrangement used to logically access rows in a table.

 An index is composed of an index key and a set of pointer‟s the index key is,

in effect, the index‟s reference point. More formally, an index is an ordered

arrangement of keys and pointers. Each key points to the location of the data

identified by the key.

 For example, suppose you want to look up all of the paintings created by a

given painter in the Ch03_Museum database in Figure 3A. Without an index, you

must read each row in the PAINTING table and see if the PANINTER_NUM matches

the requested painter. However, if you index the PAINTER table and use the index

NA

ME

NAME RED PK CED TABLE

C

U

S

T

O

M

E

R

CUS_CODE

CUS_LNAME

CUS-FNAME

CUS_INITIAL

CUS_RENEW_DATE

AGENT_CODE

Customer account

Customer last name

Customer first name

Customer initial

Customer insurance

renewal date

Agent code

CHAR(5)

VCCHAR(20)

VCHAR(20)

CHAR(1)

DATE

CHAR(3)

99999

Xxxxxxxxx

Xxxxxxxxx

X

dd-mmm-yyyy

999

10000-99999

100-999

Y

Y

Y

PK

FK

AGENT

A

G

E

N

T

AGENT_CODE

AGENT_AREACODE

AGENT_PHONE

AGENT_LNAME

AGENT_YTD_SLS

Agent code

Agent area code

Agent telephone

number

Agent ,last name

Agent year-to-date

sales

CHAR(3)

CHAR(3)

CHAR(8)

VCHAR(20)

NUMBER(9,2)

999

999

999-9999

Xxxxxxxxxxx

9,999,999.99

0.00 –

9,999,999.99

Y

Y

Y

Y

Y

PK

FK = Foreign Key

PK = Primary Key

CHAR = Fixed character length data (1-255 characters)

VARCHAR = Variable character length data (1-2,000 characters)

NUMBER = Numeric data (NUMBER(9,2) is used to specify numbers with two decimal places and up to nine digits,

including the decimal places. Some RDBMSs permit the use of a MONEY or CURRENTY data type.)

NOTE: Telephone area codes are always composed of digits 0-9. because area codes are not used arithmetically,

they are most efficiently stored as character data. Also, the area codes are always composed of three digits.

Therefore, the area code data type is defined as CHAR(3). On the other hand, names ado not conform to some

standard length. Therefore, the customer \first names are defined as VARCHAR(20), thus indicating that up to 20

characters maybe used to store the names. Character data are shown as left0-justified.

MDBMS III-B.Sc 40 compiled by J. Kishore Kumar Reddy

key PAINTER_NUM, you merely need to look up the appropriate PAINTER_NUM in

the index and find the matching pointers.

FIGURE 3A

Table name: PAINTER

Primary key: PAINTER_NUM Database name:Cho3_Museum

Foreign key: none

 PAINTER_NUM PAINTER_LNAME PAINTER_FNAME PAINTER_INITIAL

► - 123 Ross Georgette P

 + 126 Itero Julio G

Table name: PAINTING

Primary key: PAINTING_NUM

Foreign key: PAINTER_NUM

 PAINTING_NUM PAINTING_TITLE PAINTER_NUM

 ► 1338 Dawn Thunder 123

 1339
Vanilla Roses To
Nowhere

123

 1340 Tired Flounders 126

 1341 Hasty Exit 123

 1342 Plastic Paradise 126

 As you examine Figure 3B and compare it to the Ch03_Museum database

tables showing in Figure 3A, note that the first PAINTER_NUM index key value (123)

is found in records 1, 2, and 4 of the PAINTING table in Figure 3A. the second

PAINTER_NUM index key value (126) is found in records 3 and 5 of the PAINTING

table in Figure 3A.

Pointers to the PAINTING table

PAINTR_NUM (index key)

FIGURE 3B

 DBMS s use indexes for many different purposes. An index can be used to

retrieve data more efficiently. But indexes can also be used by a DBMS to retrieve

data ordered by a specific attribute or attributes.

 Indexes play an important role in DBMS s for the implementation of primary

keys. When you define a table‟s primary key, the DBMS automatically creates a

unique index on the primary key column(s) you declared.

123

126

1, 2, 4

3, 5

MDBMS III-B.Sc 41 compiled by J. Kishore Kumar Reddy

A table can have many indexes, but each index is associated with only one

table. The index key can have multiple attributes (composite index). Creating an

index is easy.

CODDS RELATIONAL DATABASE RULES (OR)THE CODD COMMANDMENTS

 E.F. Codd defined 12 rules for relational database, which any database should

satisfy in order to be regarded as a relational database. These 12 rules are called

as CODD 12 commandments. It is fact that no commercial RDBMS existing today

satisfies all these 12 rules.

 Besides the 12 Codd Rules, there is a single, overall rule which in some ways

covers all others and is called Rule 0. Rule 0 states that any truly relational

database must be manageable entirely through its own relational capabilities.

 These twelve rules can be used as the basic relational design criteria, and as

such are clear indications of the purity of the relational concept.

THE TWELVE CODD RULES

1. The Information Rule

2. Guaranteed Access Rule

3. Systematic Treatment of Null Values

4. The Data Description Rule

5. The Comprehensive Sub-Language Rule

6. The view Updating Rule

7. High-Level, Update, and Delete

8. Physical Data Independence

9. Logical Data Independence

10.Integrity Independence Rule

11. The Distribution Independence Rule

12. The Non-Subversion Rule

Rule 1: The Information Rule

 This rule states that all data in an RDBMS should exist in a relational form,

i.e., in the form of rows and columns.

Rule 2: Guaranteed Access Rule

 Any piece of data can be accessed from an RDBMS using a combination of

table name, column name, and primary key value.

MDBMS III-B.Sc 42 compiled by J. Kishore Kumar Reddy

Rule 3: Systematic Treatment of Null Values

 Missing information in a table is represented as a NULL value. Support for

NULL values in a RDBMS must be consistent and independent of data type.

Rule 4: The Data Description Rule

 This rule requires that a description of the database, or data about data

(metadata) should by store in an online data dictionary that is part of the RDBMS

and is therefore relational (composed of tables).

Rule 5: The Comprehensive Sub-Language Rule

 This rule states that an RDBMS must be completely manageable through its

own dialect of SQL. This rule also scopes the functionality of SQL to include the

following:

 Data Definition Language – DDL

 View Definition Language – DDL

 Data Manipulation Language – DML

 Integrity Constraints – DDL

 Authorization – DCL

 Transaction Boundaries – DCL

Rule 6: The view Updating Rule

 This rule states that all views that are theoretically updatable are also

updatable by the system. This rule holds true in a very restricted sense.

Rule 7: High-Level, Update, and Delete

 This rule insists that a DBMS‟s relational language be able to insert, update,

and delete more than one row with a single command.

Rule 8: Physical Data Independence

 This rule states that application programs remain logically unimpaired

whenever any changes are made in either the storage representation of data or

access methodology of data.

Rule 9: Logical Data Independence

MDBMS III-B.Sc 43 compiled by J. Kishore Kumar Reddy

 This rule states that application programs remain logically unimpaired when

information preserving changes of any kind that theoretically permit ,un-impairment

are made to the base tables.

Rule 10: Integrity Independence Rule

 This rule addresses two issues:

 Entity Integrity: Each and every instance of an entity should be

uniquely identifiable. This is accomplished through a Primary Key.

 Referential Integrity: For each distinct non-null foreign key value in

a relational database, there must exist a matching primary key value

from the same domain.

Rule 11: The Distribution Independence Rule

 This rule states that a distributed database must look to the user or the

application as a centralized database. Application programs and interactive users

should not be required to know where data are stored.

Rule 12: The Non-Subversion Rule

 This rule states that if an RDBMS supports a lower level language that

permits for examples, record-at-a-time processing, then this language must not be

able to bypass any integrity rules or constraints defined in the higher level, set-at-

a-time relational language.

MDBMS III-B.Sc 44 compiled by J. Kishore Kumar Reddy

Unit - II

DATA MODELING AND NORMALIZATION

ER- MODEL

 ATTRIBUTES

 ENTITY SETS

 RELATIONSHIPS

 DATABASE DESIGN CHALLENGES CONFLICTING GOALS

EER-MOEL

 SUPER TYPE

 SUB TYPE

 GENERALIZATION

 SPECIALIZATION

 CONSTRAINTS

 ENTITY CLUSTERING

 ENTITY INTEGRITY & SELECTING PRIMARY KEYS

NORMALIZATION

 NEED FOR NORMALIZATION

 BASIC NORMAL FORMS

 HIGHER NORMAL FORMS

 NORMALIZATION DATABASE DESIGN

 DE-NORMALIZATION

MDBMS III-B.Sc 45 compiled by J. Kishore Kumar Reddy

Unit-II

Modeling data in the organization

Entity relation model (ER Model)

 An ER model is a detailed, logical and representation of the data for an

organization for a business area.

 “The ER model is expressed in term of entities the relationships among those

entities and attributes of the both the entities and their relationships.

 An ER model is normally expressed as an entity relationship diagram, which

is graphically representation of an ER model.

Attributes

 An Attribute is a “Property or characteristics of an entity type.” The following

are a some typical entity types and their associated attributes.

STUDENT Student_ID, Student_Name, Home_Address, Phone_Number,

AUTOMOBILE Registration_Number, Color, Model, Weight, Horsepower.

Rules for giving names to attributes

1. In naming attributes we use an initial capital letter followed by lower case

letters.

2. If an attribute name consists of two words we use an underscore (_)

character.

3. To connect the words with underscore we start each word with a capital

letter.

Example: Name, Emp_Address.

 In ER diagram we represent an attribute using the symbol “Ellipse”.

Types of attributes

 The attributes are classified into four types.

Simple Composite Multivalued Derived
Attribute Attribute Attribute Attribute

1. Simple attribute

A simple or automic attribute is an attribute that “cannot be broken down into

small components”

MDBMS III-B.Sc 46 compiled by J. Kishore Kumar Reddy

Example: Color, this attribute cannot be smaller components broken down the

simple attribute represented by “ellipse symbol”.

2. Composite attribute

An attribute that can be broken down into components parts.

Example: The most common example is address, which usually be broken down

into the following components.

 Street_Name, City, State, Pincode.

 A composite attribute is represented by the following figure.

3. Multi-valued attribute

 An attribute that may take on “more than one value for a given entity

instance”.

 We indicate a multi-valued attribute with an ellipse with double lines,

the following is the symbol of multi-valued attribute

Example: The employee (Employee) entity type having the following attributes

 Emp_ID, Emp_Name, Emp_Address, Emp_Hobby

 In the above attribute the last attribute i.e. hobby that can take more

than one value. So Emp_Hobby is a multi-valued attribute.

Address

Street_

Name

City State Pincode

Emp_Hobby

MDBMS III-B.Sc 47 compiled by J. Kishore Kumar Reddy

4. Derived attribute

 A derived attribute is an attribute “whose values can be calculated

from related attribute values”, we indicate a derived attribute in an ER diagram by

using an ellipse with dashed line.

 If user needs to know how many years a person has been employees,

that value can be calculated using date-employee and to-days date.

Derived attribute

Here

Years_Emplopyed is a derived attribute.

ENTITIES, ENTITY TYPES AND ENTITY INSTANTS

Entities

 An entity is a person, place, object event or concept in the uses

environment about which the organization wishes to maintain data.

Example:

 Person : EMPLOYEE, STUDENT, PATIENT

 Place : STORE, WAREHOUSE, STATE

 Object : MACHINE, BUILDING, AUTOMOBILE

 Event : SALE, REGISTRATION, RENEWAL

EMPLOYEE Address

City Street Emp_Hobby

Emp_ID Emp_name

EMPLOYEE

Emp_ID Emp_name

Date_Emp

Years_Employed

MDBMS III-B.Sc 48 compiled by J. Kishore Kumar Reddy

 Concept : ACCOUNT, COURSE, WORK CENTER

Entity type

 An entity type is a “Collection of entities that share common properties

or characteristics”. Each entity type in an ER model is given a name. Since the

name represents a collection of items, it is always singular. We use capital letters

for names of entity types. In an ER diagram the entity is represented by the

following symbol (Rectangle).

Entity instance

 An entity instance a “Single occurrence of an entity type”. The

following example explain the differences between an entity type and two of its

instances.

Entity Types

1. Weak entity type

2. Strong entity type

3. Associative entity type

1. Weak entity type

 An entity type whose existence “depends on some other entity type”.

A weak entity is as indicated by the double line rectangle.

Entity type (EMPLOYEE)

Attributes

 EMPLOYEE NUMBER CHAR (10)

 NAME CHAR (25)
 ADDRESS CHAR (30)
 CITY CHAR (20)

 STATE CHAR (2)
 ZIP CHAR (9)

 DATE HIRED DATE
 BIRTHDATE DATE

Two Instances of EMPLOYEE:

101 102
 AKBAR KAREEM

 LBS Road Nagaraja
 Piler Hyderabad

 A.P. A.P.
 517214 500082

07-06-1990 07-07-1986

07-06-1991 07-07-1987

MDBMS III-B.Sc 49 compiled by J. Kishore Kumar Reddy

Example: Consider the following example

 An EMPLOYEE - Emp_ID, Emp_name

 DEPENDENT - Date_of_birth , dependent_name.

 In the above example the DEPENDENT entity is a weak entity. Because this entity must be depend on other entity type (EMPLOYEE). So, EMPLOYEE entity is an owner or strong entity.

 The relationship between the weak entity type and its owner entity is called an identifying relationship.

2.

Strong entity type

 “An entity that exists independently of other entity types” that means it does

not depend on another entity type. It basic symbol of representing a strong entity

is as follows.

Example: Consider the following example

 An EMPLOYEE - Emp_ID, Emp_name

 DEPENDENT - Date_of_birth , dependent_name.

 In the above example the EMPLOYEE entity is a strong or owner

entity. Because this entity is not depend on any other entity type. So, EMPLOYEE

entity is an owner or strong entity.

 The relationship between the weak entity type and its owner entity is

called an identifying relationship.

3. Associative entity

EMPLOYEE DEPENDENT

Emp_ID Emp_name Dependent_

name

Date_of_birth

EMPLOYEE DEPENDENT

Emp_ID Emp_name Dependent_

name
Date_of_birth

MDBMS III-B.Sc 50 compiled by J. Kishore Kumar Reddy

 “An associative entity is an entity that associates the instances of one or

more entity types and contains attributes that are peculiar to the relationship

between these entity instances”.

 The associative entity CERTIFICATE is represented with the “diamond

relationship symbol enclosed with in the entity box.”

Example:

 EMPLOYEE - Emp_ID, Emp_No,

 COURSE - Course_ID, course_Title.

CERTIFICATE - Certificate_No, Date_Completed

Now the relationship between these three entities by using a associative

entity is as follows.

 In the above example the entity CERTIFICATE is an associative entity

because we can use this entity as an entity type or we can use as a relationship.

Relationship or Degrees of Relationship

 A relationship type is a meaningful “association between entity types.” A

relationship type is denoted by a “diamond symbol” containing the name of the

relationship.

Degrees of a relationship

Employee

_Name

Course

title

Course_ID

EMPLOYEE COURSE CERTIFICATE

Employee

_ID

Certificate

_no
Date_Com

pletd

MDBMS III-B.Sc 51 compiled by J. Kishore Kumar Reddy

“The degrees of a relationship are the number of entity types that participate

in that relationship.”

The three most common relationship degrees in ER models are

1. Unary relationship (Degree 1)

Definition: A relationship between the instances of a single entity type

2. Binary relationship (Degree 2)

Definition: A relationship between the instances of two entity types

3. Ternary relationship (Degree 3)

Definition: A simultaneous relationship among the instances of three entity types.

The following are the symbols of the relationship degree:

1) Degree 1 relationship (OR) unary relationship.

2) Binary relationship (OR) Degree 2 relationship

3) Ternary relationship (OR) degree 3 relationship.

 Under unary relationship we have one – one and one – to – many

relationships.

 Under binary relationship we have

i) one-to-one relationship

ii) one-to-many relationship

iii) many-to-one relationship

MDBMS III-B.Sc 52 compiled by J. Kishore Kumar Reddy

iv) many-to-many relationship

i) One-to-one relationship

 An entity in A is associated with “At most one entity” in B and an entity in B

is associated with “at most one entity” in A.

Example: Consider the following entity sets having the attributes.

CUSTOMER - Customer_Name, Customer_ID, Customer_Address

ACCOUNT - Account_Number, Deposited_Amount, Withdrawal_Amount,

 Balance

The relationship set Cust_Acct may be one – to - one relationship. (A

customer has only one account in a bank).

 1 1

One-to-one relationship between customer and account.

DENOTED BY TWO DIRECTED LINES

ii) One-to-many relationship

An entity in A is associated with any number of entities in B. An entity in B,

however in B, however with at most one entity A.

A1

A2

A3

B1

B2

B3

CUSTOMER
CUST

_ACC
ACCOUNT

name ID

Account_Nu

mber
Balance

Address

A1

A2

A3

B1

B2

B3

B4

Dep_Amount Wdr_Amount

MDBMS III-B.Sc 53 compiled by J. Kishore Kumar Reddy

One – to – many relationship

Example: Consider the following entity sets having the attributes.

CUSTOMER - Customer_Name, Customer_ID, Customer_Address

ACCOUNT - Account_Number, Deposited_Amount, Withdrawal_Amount,

 Balance

The relationship set Cust_Acct may be one – to – many relation-ship. (A

customer may have many accounts in several banks).

 1 M

One-to-many relationship between customer and account.

DENOTED BY ONE DIRECTED LINE AND ONE UNDIRECTED LINE

 iii) Many-to-One relationship:

An entity in “A” is associated with at most one entity in “B”. An entity in “B”,

however can be associated with any number of entities in “A”.

Many-to-one relationship

A1

A2

A3

A4

B1

B2

B3

CUSTOMER
CUST

_ACC
ACCOUNT

name ID

Account_Nu

mber
Balance

Address Dep_Amount Wdr_Amount

MDBMS III-B.Sc 54 compiled by J. Kishore Kumar Reddy

Example: Consider the following entity sets having the attributes.

CUSTOMER - Customer_Name, Customer_ID, Customer_Address

ACCOUNT - Account_Number, Deposited_Amount, Withdrawal_Amount,

 Balance

The relationship set Cust_Acct may be many – to – one relation-ship. (A

customer may have many accounts in one bank {joint A/c}).

 M 1

Many-to-one relationship between customer and account.

DENOTED BY ONE UN-DIRECTED LINE AND ONE DIRECTED LINE

iv) Many-to-many relationship

An entity in “A” is associated “with any number of entities” in “B” and an

entity in “B” is associated with any number of entities in “A”.

Example: Consider the following entity sets having the attributes.

CUSTOMER - Customer_Name, Customer_ID, Customer_Address

ACCOUNT - Account_Number, Deposited_Amount, Withdrawal_Amount,

 Balance

A1

A2

A3

B1

B2

B3

CUSTOMER
CUST

_ACC
ACCOUNT

name ID

Account_Nu

mber
Balance

Address Dep_Amount Wdr_Amount

MDBMS III-B.Sc 55 compiled by J. Kishore Kumar Reddy

The relationship set Cust_Acct may be many – to – many relation-ship.

(Customers may have many accounts in many banks).

 M M

DENOTED BY UN-DIRECTED LINES

Many-to-many relationship between customer and account.

 Ternary relationship

A simultaneous relationship among the instances of three entity types.

Ternary relationship

Example: Consider the following entity sets with possible attribute is

 CUSTOMER: customer_ID, customer_add, customer_name

 ACCOUNT: Account_number,Dep_Account,W_Amount,Balance

 BRANCH: Branch_name, Branch_code, Branch_city.

CUSTOMER
CAB DEPENDENT

Customer

_Add

Customer_

name

Account_

Number
Balance

Customer_ID

BRANCH

B_Name

B_Code

B_City

CUSTOMER
CUST

_ACC
ACCOUNT

name ID

Account_Nu

mber
Balance

Address Dep_Amount Wdr_Amount

W_amount

D_Amount

MDBMS III-B.Sc 56 compiled by J. Kishore Kumar Reddy

Cardinality constrains

 Cardinality constrain specifies the number of instances of one entity that can

(or must) be associated with each instances of another entity.

 The coordinately constrain is divided into two types. They are

1. Minimum Cardinality

2. Maximum Cardinality

Minimum Cardinality

 The minimum Cardinality of a relationship is the “minimum number of

instances of one entity that may be associated with each instances of another

entity.

Maximum Cardinality

 The maximum Cardinality of a relationship is the “maximum number of

instances of one entity that may be associated with each instances of another

entity.

DATABASE DESIGN CHALLENGES (CONFLICTING GOALS)

 Database designers often must make design compromises that are triggered

by conflicting goals, such as design standards (design elegance), processing speed,

and information requirements.

 The database design must conform to design standards. Such standards

have guided you in developing logical structures that minimize data

redundancies, thereby minimizing the likelihood that destructive data

anomalies will occur. Without design standards, it is nearly impossible to

formulate a proper design proves, to evaluate an existing design, or to trace

the likely logical impact of changes in design.

 In many organizations, particularly those generating large numbers of

transactions, high processing speeds are often a top priority in database

design. High processing speed means minimal access time, which may be

achieved by minimizing the number and complexity of logically desirable

relationships.

 The quest for timely information might be the focus of database design.

Complex information requirements may dictate data transformations, and

they may expand the number of entities and attribute4s within the design.

MDBMS III-B.Sc 57 compiled by J. Kishore Kumar Reddy

Therefore, the database may have to sacrifice some of its “clean” design

structures and/or some of its high transaction speed to ensure maximum

information generation.

 A design that meets all logical requirements and design conventions is an

important goal

 Even as the designer focuses on the entities, attributes, relationships, and

constraints, He/She should begin thinking about end-user requirements such

as performance, security, shared access, and data integrity, the designer

must consider professing requirements and verify that all update, retrieval,

and deletion options are available. Finally, a design is of little value unless

the end product is capable of delivering all specified query and reporting

requirements.

MDBMS III-B.Sc 58 compiled by J. Kishore Kumar Reddy

Basic symbol used in ER-diagram

 SYMBOL MEANING

 Simple attribute

 Composite attribute

 Multivalued attribute

 Derived attribute

 Strong entity

 Weak entity

 Associative entity

 Unary Relationship

 Binary Relationship

 Ternary Relationship

EER Model (Enhanced Entity Relationship Model)

MDBMS III-B.Sc 59 compiled by J. Kishore Kumar Reddy

1. Introduction to EER Model

2. Super type

3. Sub type

4. Generalization

5. Specialization

6. Constrains in super type & subtype relation

7. Total specialization rule

8. Partial specialization rule

9. Disjoin rule

10.Overlap rule

Introduction to EER Model

 The EER(Enhanced Entity Relationship Model) model is used to identity

the model that has resulted from extending the original ER model with these new

modeling constructs.

 “The most important new modeling construct in incorporated in the

EER model is super type/subtype relationships”.

Representing super type and subtype

Super type:

 “A generic entity type that has a relationship with one or more subtypes.”

Example:

 The following example shows a representation of EMPLOYEE super type with

its three sub types using EER notation .consider the following entity sets with

attributes.

1. Employee: number, name, address

 Suppose that an organization has three basic types of employees namely

 i) Hourly employee

 ii) Salaried employee

 iii) Contract employee

 Some of important attribute for each of these type of employees are the

following

i) Hourly employees: Emp_no, Emp_name, Emp_add, Hourly_Rate

ii) Salaried employees: Emp_no, Emp_name, Emp_add, Annual_Salary

iii) Contract employees: Emp_no, Emp_name, Emp_add, Billing_Rate

MDBMS III-B.Sc 60 compiled by J. Kishore Kumar Reddy

 In all above employee types several, attributes in common namely “Emp_no,

Emp_name, Emp_add. In addition, each type has one or more attributes distinct

from the attributes of the other types the following is the EER diagram with super

type and sub types.

 The above figure shows a representation of the EMPLOYEE super type with its

three subtypes, using EER relation. Attribute shared by all employees are associated

with the EMPLOYEE entity type. Attributes that are peculiar to each subtype are

included with subtype only.

Super Type

 The super type is connected with a line to a circle, which in turn is

connected by a line to each subtype that has been defined.

Subtype

 A sub grouping of the entities is an entity type that is meaningful to the

organization and that “shares common attributes or relationships, distinct from

other subgroups.”

Example: STUDENT is an entity type in a university. Two sub types of STUDENT are

GRADUATE STUDENT and UNDERGRADUATE STUDENT. In this example STUDENT

is super type where as GRADUATE STUDENT and UNDERGRADUATE STUDENT is

two subtypes.

Basic notation

EMPLOYEE

Emp_No Emp_name Address

Hourly

Employee

Salaried

Employee

Contract

Employee

Hourly

waitage

Annual

Salary

Billing

rate

Sub types

Super type

MDBMS III-B.Sc 61 compiled by J. Kishore Kumar Reddy

The U-shaped symbol on each line connecting a subtype to the circle

indicates that the subtype is a subset of the super type.

Basic concepts and notation per super type and sub types relationship

 The basic notation that we use for sub type/ super type relationships is

shown in the following figure.

Basic concepts and notation per sub type and super type relationship:

 In the above figure the super type is connected with a line to a circle which in

turn is connected by a line to each sub type that has been defined.

 The “U” shaped symbol on each line connecting a subtype to the circle

indicates that the subtype is a subset of the super type.

 “Attributes that are shared by all entries” are associated with the super

type. Attributes that are unique to a particular “subtype on associated with

that sub type.”

When to use super type/sub type relationships:

Use the super type/sub type relationships in the following situations.

1) There are attributes that apply to some (but not all) of the instance of an

entity type.

2) The instances of a subtype participate in a relationship unique to that sub

type.

Super type

Attributes shared

by all entities

Sub type 1 Sub type 2 Sub type 3

Attributes

unique to

sub type-1

Attributes

unique to

sub type-2

Attributes

unique to

sub type-3

Specified vision of

super type

General entity type

and soon

and so on

MDBMS III-B.Sc 62 compiled by J. Kishore Kumar Reddy

Representing generalization and specialization:

 There are two processes namely

1. Generalization

2. Specialization

-That are serve as mental models in developing super/sub types

relationships.

1. Generalization

Definition: “The process of defining a more general entity type from a set of more

specialized entity types.”

 “The generalization is a bottom up process,” (deriving super type from its

subtypes.)

Example: consider three entity types having the attributes is as follows

CAR: Vehicle_ID, Price,No_of_Passengers, Vechicle_Name, Engine_Displacement,

Model, Make, Color

TRUCK: Vehicle_ID, Vechicle_Name , Capacity, Price, cab_type, Model, Engine

_displacement,Make, Color

MOTORCYCLE: Vehicle_ID, Vechicle_Name ,Make, Price, Model,

Engine_displacement

 Three entity types CAR, TRUCK, MOTORCYCLE At the stage the data modeler

intends to represent these separately on an ER diagram in fig A..

a1

A

a3

a2

Super type

CAR

ID_No

Price
Name

Model

Color

No. of passengers

Engine_displacement

MDBMS III-B.Sc 63 compiled by J. Kishore Kumar Reddy

This more general entity type (named VECHICLE) together with the resulting super

type/subtype relationships is shown in figure(B).

Generalization to vehicle super type

 The entity CAR has the specific attribute number of passengers, while TRUCK

has two specific attributes cab_type, capacity. Thus generalization has allowed us

to group entity types along with their common attributes and at the same time

preserves specific attributes that are peculiar to each sub type.

VEHICLE

Price

Engine displacement

Model
Make

Name

ID

No. of

passengers
Capacity

CAR TRUCK
Cab_Type

CAR

ID
Name

Price
Model

Engine_displacement

TRUCK

Name

ID
Price

Capacity

Model

Color

Cab_type

MDBMS III-B.Sc 64 compiled by J. Kishore Kumar Reddy

 “Notice that the entity type MOTORCYCLE is not included in the relationship

because it does not satisfy the conditions for sub type.”

 We will notice that only attributes of MOTORCYCLE one those that are

common to all vehicles. There are no specific attributes to MOTORCYCLE.

Specialization: Generalization is bottom up process. Specialization is a top down

process the direct reverse of generalization.

Definition: “Specialization is the process of defining one or more subtypes of the

super type and forming sub type/super type relationships”.

Example: suppose an entity type PART having the attributes.

PART: part_Number, Description, Location, Quantity_on_ Hand, Unit_Price,

Supplier_ID, Routing _Number.

 There are two possible sources for parts: some are manufactured internally,

while others are purchased from outside supplies. Further we discovered that some

parts are obtained from both sources.

 These factors suggest that PART should be specialized by defining the sub

types MANUFACTURED PART and PURCHASED PART.

a1

A

a3

a2

Super type

MDBMS III-B.Sc 65 compiled by J. Kishore Kumar Reddy

 Difference between Generalization and Specialization

Generalization Specialization

1. Generalization is valuable

technique for developing

super type/sub type

relationship.

2. Deriving super type from

sub type.

3. Bottom up process

1. Specialization is also valuable

technique for developing sub

type/super type relationship.

2. Deriving sub types from super

type.

3. Top down process.

Specifying constraints in super type/sub type relationships:

Constraints in super type / sub type relationship

Total Specialization Partial specialization Disjoint rule Overlap rule

1.Total specialization:

 Total specialization rule specifies that each entity instance of the super type

must be a member of some sub type in the relationship.

PART

Purchased part Manufactured

part

Supplier

Super_ID

Part_no

Location

Description

Qty_onhand

Routing

no

suppliers

Unit_price

MDBMS III-B.Sc 66 compiled by J. Kishore Kumar Reddy

Example: consider the example of PATIENT and introduces the notation for total

specialization.

 In this example the business rule is the following: A patient must be either

out patient or a resident patient. There are no other types of patients in this

hospital. Total specialization is indicated by the double line.

Total specialization rule to patient

2.Partial specialization rule

 The partial specialization rule specifies that an entity instance of the super

type is allowed not to be belonging to any sub type. The partial specialization is

specified by the single line.

Example: consider the example of VEHICLE and is sub type CAR and TRUCK,

MOTORCYCLE.

 In this example MOTORCYCLE is a type of VEHICLE but that is not

represented as a sub type in the data model.

PATIENT

Name

ID

Admit_date

Out

Patient
Residnet

patient

Checkback

date

Date_dis

charge

Responsible

physician

BED

Bed_no

Is carried

for

Is

Assigne

d

MDBMS III-B.Sc 67 compiled by J. Kishore Kumar Reddy

Partial specialization rule to vehicle

3.Disjoint rule

 The disjoint rule specifies that if an entity instance of the super type is a

member of one sub type, it cannot simultaneously be a member of any other sub

types.

 The disjoint rule as specified by the letter„d‟ in the circle joining the super

type and its sub types

Example: consider the example of patient.

 The business rule in this case in this case is the following:

At any given time, a patient must be either an out patient or a resident patient but

cannot be both.

VEHICLE

Price

Engine displacement

Model
Make

Name

ID

No. of

passengers

Cab_type
CAR TRUCK

Capacity
No. of

passengers

MDBMS III-B.Sc 68 compiled by J. Kishore Kumar Reddy

Disjoint rule to patient

4. Overlap rule

 The overlap rule specifies that an entity instance can simultaneously be a

member of two or more sub types.

 The overlap rule is specified by placing the letter „o‟ in the circle.

Example: consider the example entity type PART with its sub types

MANUFACTURED PART and PURCHASED PART. In this example some parts are both

manufactured and purchased.

Entity clustering

PART

Number

Description

Qty_onhand

Manufactur

ed part
Purchased

part

Rating_no.

Supplier

Supplier_ID

Suppliers

Location

Unit price

Overlap rule to PART

PATIENT

Name

ID

d

Out

Patient
Residnet

patient

Checkback

date

Date_dis

charge

Responsible

physician

BED

Bed_no

Is carried

for

Is

Assigne

d

Admit_date

MDBMS III-B.Sc 69 compiled by J. Kishore Kumar Reddy

 E-R diagrams can become large and complex including hundreds of entities.

Many users and managers do not need to see all the entities, relationships and

attributes to understand the part of the database with which they

 Entity clustering is a useful way to represent a data model for a large and

complex organization.

Definition:

 “An entity cluster is a set of one or more entity types and associated

relationships grouped into a single abstract entity type.”

 Because an entity cluster behaves like an entity type, entity clusters and

entity types can be further grouped to form a higher level entity cluster.

 Entity clustering is a hierarchical decomposition a macro level view of the

data model into finer and finer views, eventually resulting in the full, detailed data

model.

MDBMS III-B.Sc 70 compiled by J. Kishore Kumar Reddy

N O R M A L I Z A T I O N

Definition and need of Normalization

 “Normalization is the process of decomposing relations with anomalies to

produce smaller, well structured relations.”

 Normalization is primarily a tool to validate and improve a logical design, so

that it satisfies certain constraints that “avoid unnecessary duplication of data.”

Steps in Normalization

 First Normal Form (1NF): Any multi-valued attributes have been

removed, so there is a single (possibly null) at the intersection of each

row and column of the table.

 Second Normal Form (2NF): Any partial functional dependencies

have been removed.

 Third Normal Form (3NF): Any transitive dependencies have been

removed.

 Boyce/Codd Normal Form (BCNF): Any remaining anomalies that

result from functional dependencies have been removed.

 Fourth Normal Form (4NF): Any multi-valued dependencies have

been removed.

 Fifth Normal Form (5NF): Any remaining anomalies have been

removed.

Functional Dependencies

 “Normalization is based on the analysis of functional dependences.”

 Def: A Functional dependency is a constraint between two attributes or two sets of

attributes.

“The functional dependency” of B on A is “Represented by an arrow”, as

follows : A B

Example:

 Consider the relation

EMP_COURSE (Emp_ID, Course_Title, Date_Completed)

We represent the functional dependency in this relation as follows.

B
A

S
IC

 N
O

R
M

A
L

 F
O

R
M

S

A
D

V
A

N
C

E
D

 N
O

R
M

A
L

 F
O

R
M

S

MDBMS III-B.Sc 71 compiled by J. Kishore Kumar Reddy

Emp_ID, Course_Title Date_Completed.

Common examples of functional dependencies are the following.

 1. SSN Name, Address, Birth date

 (A person Name, Address, Birth Date is functionally dependent on that

person‟s social security number)

 2. VIN Make, Model, Color

 (The make model and color of a vehicle are functionally dependent on

the Vehicle identification number)

Determinants

 “The attributes on the left-hand side of the arrow in functional dependencies

called a determinant”

Example: SSN, VIN are called determinants

EMP_ID, Course_Title are also called determinants.

Representation of functional dependencies

 We represent the functional dependencies for a relation using the notation

shown in the following figure (a).

Example 1: Figure (a) shows the representation for EMPLOYEE 1

Emp_ID Name Dept_Name Salary

Functional Dependencies if Figure(a)

 The horizontal line in the figure portrays the functional dependencies.

 A vertical line drops from the primary key (Emp_ID) and connects to this line.

Vertical arrows then point to ach of the non-key attributes that are functionally

dependent on the primary key.

Example 2: Consider the example EMPLOYEE 2

There are two functional dependencies in this relation.

1. Emp_ID Name, Dept_Name, Salary

2. Emp_ID, Course_Title, Date_Completed

The primary key of EMPLOYEE 2 is a composite key neither Emp_ID nor

Course_Title uniquely identifies a row in this relation.

MDBMS III-B.Sc 72 compiled by J. Kishore Kumar Reddy

Emp_ID Course_Title Name Dept_Name Salary Date_Completed

Functional dependencies in EMPLOYEE 2

BASIC NORMAL FORMS (1NF, 2NF and 3NF):

First Normal Form (1NF):

 A relation is in “First Normal Form” (1NF) it satisfies

 All of the key attributes are defined

 There are no repeating groups in the table. In other words ,each

row/column intersection contains one and only value(atomic or single

value) ,not a set of values(mutivalued attributes).

 All attributes are dependent on the primary key.

Example: Table 1: Un-normalized Data

PROJ_
NUM

PROJ_
NAME

EMP_
NUM

EMP_
NAME

JOB_
CLAS

CHG_
HOURS HOURS

15 Evergreen 103
June
E.Arbogh

Elect
Engineer 84.5 23.8

 101 john
Data base
designer 105 19.4

 105 Alice
Data base
designer 105 35.8

 106 William Programmer 35.75 12.6

 102 David
System
Analyst 96.75 23.8

18
Amber
Wave 114 Annelise

Application
Designer 48.1 24.6

 118 James
General
Support 18.36 45.3

 104 Anne
System
Analyst 96.75 32.4

 112 Darlene DSS analyst 45.95 44

22
Rolling
tide 105 Alice

Data base
designer 105 64.7

 104 Anne.k
System
Analyst 96.75 48.4

 113 Delbert
Application
Designer 48.1 23.6

 111 Geoff
Clerical
support 26.87 22

 106 William Programmer 35.75 12.8

25 Starflight 107 Maria Programmer 35.75 24.6

 115 Travis
System
Analyst 96.75 45.8

 101 John
Data base
designer 105 56.3

 114
Anne
jones

Application
Designer 48.1 33.1

 108 Ralph
System
Analyst 96.75 23.6

 118 James
General
Support 18.36 30.5

MDBMS III-B.Sc 73 compiled by J. Kishore Kumar Reddy

 112 Darlene DSS analyst 45.9 41.4

Table 2: Converting Un-normalized Data into First Normal Form (1NF):

Second Normal Form (2 NF):

 A relation is in “Second normal form (2NF)” it is in first normal form and

every non key attribute is fully functionally dependent on the primary key”.

A table is in second normal form(2 NF) when

 It is in first normal form(1NF)

and

 It includes no partial dependences; that is, no attribute is dependent on only

a portion of the primary key.

(But it is still possible for a table in 2NF to exhibit transitive dependency ; that

is, one or more attributes may be functionally dependent on non key attributes)

Figure (a): DEPENDENCY DIAGRAM

PROJ_
NUM

PROJ_
NAME

EMP_
NUM

EMP_
NAME

JOB_
CLAS

CHG_
HOURS HOURS

M
U

L
T

I V
A

L
U

E
D

 A
T

T
R

IB
U

T
E

S
 E

L
E

M
IN

A
T

E
D

 &
 C

O
N

V
E

R
T

E
D

 T
O

 1
N

F

15 Evergreen 103
June
E.Arbogh Elect Engineer 84.5 23.8

15 Evergreen 101 john Data base designer 105 19.4

15 Evergreen 105 Alice Data base designer 105 35.8

15 Evergreen 106 William Programmer 35.75 12.6

15 Evergreen 102 David System Analyst 96.75 23.8

18 Amber Wave 114 Annelise Application Designer 48.1 24.6

18 Amber Wave 118 James General Support 18.36 45.3

18 Amber Wave 104 Anne System Analyst 96.75 32.4

18 Amber Wave 112 Darlene DSS analyst 45.95 44

22 Rolling tide 105 Alice Data base designer 105 64.7

22 Rolling tide 104 Anne.k System Analyst 96.75 48.4

22 Rolling tide 113 Delbert Application Designer 48.1 23.6

22 Rolling tide 111 Geoff Clerical support 26.87 22

22 Rolling tide 106 William Programmer 35.75 12.8

25 Starflight 107 Maria Programmer 35.75 24.6

25 Starflight 115 Travis System Analyst 96.75 45.8

25 Starflight 101 John Data base designer 105 56.3

25 Starflight 114
Anne
jones Application Designer 48.1 33.1

25 Starflight 108 Ralph System Analyst 96.75 23.6

25 Starflight 118 James General Support 18.36 30.5

25 Starflight 112 Darlene DSS analyst 45.9 41.4

Table 2: A TABLE IS IN FIRST NORMAL FORM

PROJ_NUM PROJ_NAME EMP_NUM EMP_NAME JOB_CLASS CHG_HOURS HOURS_BILLED

 Partial dependency Transitive dependency

 Partial dependency

MDBMS III-B.Sc 74 compiled by J. Kishore Kumar Reddy

In above dependency diagram two types dependencies exist.

Partial dependencies:

We need to know only the PROJ_NUM to determine the PROJ_NAME is

dependent on only part of the primary key. And you need to know only the

EMP_NUM to find the EMP_NAME, the JOB_CLASS and the CHG_HOUR. A

dependency based on only a part of a composite primary key is called primary key

is called a Partial dependency.

Figure (b):

SECOND NORMAL FORM 2NF CONVERSION

SECOND NORMAL FORM 2NF CONVERSION RESULTS

PROJ_
NUM

PROJ_
NAME

EMP_
NUM

EMP_
NAME

JOB_
CLAS

CHG_
HOURS HOURS

M
U

L
T

I

V
A

L
U

E
D

A
T

T
R

IB
U

T
E

S

E
L
E

M
IN

A
T

E

D

&

C
O

N

V
E

R
T

E
D

T
O

1
N

F

15 Evergreen 103 June Elect Engineer 84.5 23.8

PROJ_NUM PROJ_NAME

EMP_NUM EMP_NAME JOB_CLASS CHG_HOURS

PROJ_NUM EMP_NUM BILLED_HOURS

Table Name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

Table Name: EMPLOYEE

EMPLOYEE (EMP_NUM,EMP_NAME,JOB_CLASS,CHG_HOUR)

Table Name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM,EMP_NUM,ASSIGN_HOURS)

MDBMS III-B.Sc 75 compiled by J. Kishore Kumar Reddy

The above table 1 is in 1NF but not 2NF now the 1NF Table is decomposed

into 3 tables namely PROJECT, EMPLOYEE, ASSIGNMENT is as follows then

it satisfies the 2NF.

EMP_NUM EMP_NAME JOB_CLAS CHG_HOURS

103 June E.Arbogh Elect Engineer 84.5

101 john Data base designer 105.0

105 Alice Data base designer 105.0

106 William Programmer 35.75

102 David System Analyst 96.75

114 Annelise Application Designer 48.10

118 James General Support 18.36

104 Anne System Analyst 96.75

112 Darlene DSS analyst 45.9

113 Delbert Application Designer 48.1

111 Geoff Clerical support 26.87

107 Maria Programmer 35.75

E.Arbogh

15 Evergreen 101 john Data base designer 105 19.4

15 Evergreen 105 Alice Data base designer 105 35.8

15 Evergreen 106 William Programmer 35.75 12.6

15 Evergreen 102 David System Analyst 96.75 23.8

18 Amber Wave 114 Annelise Application Designer 48.1 24.6

18 Amber Wave 118 James General Support 18.36 45.3

18 Amber Wave 104 Anne System Analyst 96.75 32.4

18 Amber Wave 112 Darlene DSS analyst 45.95 44

22 Rolling tide 105 Alice Data base designer 105 64.7

22 Rolling tide 104 Anne.k System Analyst 96.75 48.4

22 Rolling tide 113 Delbert Application Designer 48.1 23.6

22 Rolling tide 111 Geoff Clerical support 26.87 22

22 Rolling tide 106 William Programmer 35.75 12.8

25 Starflight 107 Maria Programmer 35.75 24.6

25 Starflight 115 Travis System Analyst 96.75 45.8

25 Starflight 101 John Data base designer 105 56.3

25 Starflight 114
Anne
jones Application Designer 48.1 33.1

25 Starflight 108 Ralph System Analyst 96.75 23.6

25 Starflight 118 James General Support 18.36 30.5

25 Starflight 112 Darlene DSS analyst 45.9 41.4

Table 1: A TABLE IS IN FIRST NORMAL FORM

PROJ_NUM PROJ_NAME

15 Evergreen

18 Amber Wave

22 Rolling tide

25 Starflight

Table 2: 2NF:

PROJECT(PROJ_NUM,PROJ_NAME)

MDBMS III-B.Sc 76 compiled by J. Kishore Kumar Reddy

115 Travis System Analyst 96.75

108 Ralph System Analyst 96.75

Table 3: 2NF:
EMPLOYEE(EMP_NUM,EMP_NAME,JOB_CLASS,CHG_HOURS)

PROJ_NUM EMP_NUM HOURS_Billed

15 103 23.8

15 101 19.4

15 105 35.8

15 106 12.6

15 102 23.8

18 114 24.6

18 118 45.3

18 104 32.4

18 112 44.0

22 105 64.7

22 104 48.4

22 113 23.6

22 111 22

22 106 12.8

25 107 24.6

25 115 45.8

25 101 56.3

25 114 33.1

25 108 23.6

25 118 30.5

25 112 41.4

Table 4: 2NF
ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS_BILLED)

Third Normal Form (3 NF):

“A Relation is in third normal form (3 NF) when:

It is in second normal form

 and

It contains no transitive dependencies exist”.

Transitive dependency:

 A transitive dependency in a relation is a functional dependency

between two (or more) non key attributes.

PROJ_NUM PROJ_NAME EMP_NUM EMP_NAME JOB_CLASS CHG_HOURS HOURS_BILLED

 Partial dependency Transitive dependency

 Partial dependency

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

PARTIAL DEPENDENCIES:

 (PROJ_NUM PROJ_NAME)

 (EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

TRANSITIVE DEPENDENCY:

 (JOB CLASS CHG_HOUR)

MDBMS III-B.Sc 77 compiled by J. Kishore Kumar Reddy

Dependency Diagram

In above dependency diagram CHG_HOURS is functionally dependent on

JOB_CLASS and JOB_CLASS is already depended on EMP_NUMBER. So this type of

dependencies is known as transitive dependence. To eliminate transitive

dependence the table decompose into 4 tables namely:

 PROJECT (PROJ_NUM, PROJ_NAME)

 EMPLOYEE (EMP_NUM,EMP_NAME,JOB_CLASS,CHG_HOUR)

 ASSIGNMENT (PROJ_NUM,EMP_NUM,ASSIGN_HOURS)

 JOB (JOB_CLASS, CHG_HOURS)

THIRD NORMAL FORM 3NF CONVERSION

THIRD NORMAL FORM 3NF CONVERSION RESULTS

PROJ_NUM PROJ_NAME

15 Evergreen

18 Amber Wave

22 Rolling tide

PROJ_NUM PROJ_NAME

EMP_NUM EMP_NAME JOB_CLASS CHG_HOURS

PROJ_NUM EMP_NUM BILLED_HOURS

JOB_CLASS CHG_HOURS

Table Name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

Table Name: EMPLOYEE

EMPLOYEE (EMP_NUM,EMP_NAME,JOB_CLASS,CHG_HOUR)

Table Name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM,EMP_NUM,ASSIGN_HOURS)

Table Name: JOB

JOB (JOB_CLASS, CHG_HOURS)

MDBMS III-B.Sc 78 compiled by J. Kishore Kumar Reddy

EMP_NUM EMP_NAME JOB_CLAS CHG_HOURS

103 June E.Arbogh Elect Engineer 84.5

101 john Data base designer 105.0

105 Alice Data base designer 105.0

106 William Programmer 35.75

102 David System Analyst 96.75

114 Annelise Application Designer 48.10

118 James General Support 18.36

104 Anne System Analyst 96.75

112 Darlene DSS analyst 45.9

113 Delbert Application Designer 48.1

111 Geoff Clerical support 26.87

107 Maria Programmer 35.75

115 Travis System Analyst 96.75

108 Ralph System Analyst 96.75

Table 2: 3NF: EMPLOYEE (EMP_NUM,EMP_NAME,JOB_CLASS,CHG_HOURS)
PROJ_NUM EMP_NUM HOURS_Billed

15 103 23.8

15 101 19.4

15 105 35.8

15 106 12.6

15 102 23.8

18 114 24.6

18 118 45.3

18 104 32.4

18 112 44.0

22 105 64.7

22 104 48.4

22 113 23.6

22 111 22

22 106 12.8

25 107 24.6

25 115 45.8

25 101 56.3

25 114 33.1

25 108 23.6

25 118 30.5

25 112 41.4

Table 3: 3NF
ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS_BILLED)

25 Starflight

Table 1: 3NF:
PROJECT(PROJ_NUM,PROJ_NAME)

JOB_CLASS CHG_HOURS

Elect Engineer 84.5

Data base designer 105

Programmer 35.75

System Analyst 96.75

Application Designer 48.1

MDBMS III-B.Sc 79 compiled by J. Kishore Kumar Reddy

ADVANCED NORMAL FORMS (BCNF, 4NF and 5NF)

THE BOYCE-CODD NORMAL FORM (BCNF)

 A table is in Boyce-Codd normal form (BCNF) when every determinant

in the table is a candidate key. When a table contains only one candidate key,

the 3NF and the BCNF are equivalent.

A + B C, D

C B

 The table structure shown in below figure has no partial dependencies, nor

does it contain transitive dependencies. (the condition C B indicates that a non-

key attribute determines part of transitive).

General Support 18.36

DSS analyst 45.95

Clerical support 26.87

Table 4: 3NF
JOB(JOB_CLASS,CHG_HOUR)

A D C B

A table that is in 3NF but not in BCNF

MDBMS III-B.Sc 80 compiled by J. Kishore Kumar Reddy

A D C B

3NF, but not BCNF

A D C B

1NF Partial dependency

MDBMS III-B.Sc 81 compiled by J. Kishore Kumar Reddy

 Decomposition to BCNF

The difference between 3NFand BCNF is that for a functional dependency A-

>B the third normal form allows this dependency in a relation if B is a Primary key

attribute and „A‟ is not a candidate key where as BCNF insist that for this

dependency to remain in a relation „A‟ must be a candidate key. Therefore BCNF is

a stronger form of the 3NF such that every relation in BCNF is also in the 3NF.

However a relation in the 3NF is not necessarily in BCNF.

Fourth Normal Form (4NF):

Multi-valued dependencies (MVDs) are removed it satisfies the 4NF.

 No, table should contain two or more one-to-many or many-to-many

relationships that are not directly related to the key. These kinds of

relationships are called multi-valued dependencies (MVDs).

Consider a table (relation) EMPLOYEE that has the attributes Name, Project

and Hobby. A row in the EMPLOYEE table represents the fact that an employee

works for a project and has a hobby. But an employee can work in more than one

project and can have more than one hobby. The employee‟s projects and hobbies

are independent of one another. To keep the relation state consistent we must have

a separate tuple to represent every combination of an employee‟s project and an

employee‟s hobbies. This constraint is specified as a multi-valued dependency on

the EMPLOYEE relation. The multi-valued dependency can be avoided using the

fourth normal form. EMPLOYEE TABLE

EMPLOYEE

NAME PROJECT HOBBY

Alexis Microsoft Reading

A C D C B

3NF and BCNF 3NF and BCNF

MDBMS III-B.Sc 82 compiled by J. Kishore Kumar Reddy

Alexis Oracle Music

Alexis Microsoft Music

Alexis Oracle Reading

Mathews Intel Movies

Mathews Sybase Riding

Mathews Intel Riding

Mathews Sybase Movies

We resolve this by decomposing the EMPLOYEE table into two tables that satisfy the fourth

normal form as follows.

PROJECT

Alexis Microsoft

 Alexis Oracle

Mathews Intel

Mathews Sybase

Fifth Normal Form (5NF): Any remaining anomalies have been removed.

HOBBY

 Alexis Reading

Alexis Music

Mathews Movies

Mathews Riding

MDBMS III-B.Sc 83 compiled by J. Kishore Kumar Reddy

UNIT - III

Interaction with Databases and Construction of Information System

S Q L (STRUCTURED QUERY LANGUAGE)

SQL INTRODUCTION

SQL was first introduced by Dr CODD. SQL allows users of the database to

communicate with the database. Data in a relational database retrieved using a

standard language like SQL. It is English like computer language. This makes

interaction between user and data base very simple.

Advantages of SQL

 Non procedural language because more than one record can be accessed

rather than one record at a time.

 It is the common language for all relational data bases. In other words it is

portable and it requires very few modifications that it can work on other

databases.

 Very simple commands for quarrying inserting, deleting and modifying data.

 Easy to learn can handle complex situations.

 The results to be expected are well defined.

 The language has sound theoretical bases and there is no ambiguities about

the way of query.

Types of SQL

 The SQL is of two types, they are

1. Interactive SQL

2. Embedded SQL

While both operate exactly the same way, their usage differs.

1. Interactive SQL

 Interactive SQL is used for interacting directly with the database, where the

out put of the operation is used for human consumption. As the term suggests, the

commands are interactive. Once the command is specified, it is executed and the

output is immediately viewed by the user.

2. Embedded SQL

MDBMS III-B.Sc 84 compiled by J. Kishore Kumar Reddy

 In the case of embedded SQL, commands are SQL commands that are

written in some other language, such as COBOL or Pascal. This makes the programs

very fast and powerful.

DATA TYPES

 Oracle supports the following data types of achieve the above requirements.

Data types in SQL

String Numeric Date / Time

 Char Varchar2 Long Number Integer Float Date

String data types: The following are the string or character data types supported

by oracle.

1. Char
2. Varchar2
3. Long

Char: The char data type is used, when fixed length character string is required, it

can store alphanumeric values. The column length of such a data typed can very

b/w 1-2000 bytes. By default it is one byte.

If the user enters a value shorter than the specified length, then the Data

base blank pads to the fixed length. In case if the user enters a value larger than

the specified length, then the Database would return an error.

Varchar2: The varchar2 data type supports a variable length character string. It

also stores alphanumeric values. The size for this data type ranges from 1-4000

bytes. While defining this data type we should specify the size. Using varchar2

saves disk space when compare to char.

Long:- This data type is used to store variable character length. The maximum

size is 2GB, it is also used to store alphanumeric values. Long data type has same

characteristics similar to varchar2 data type.

Note: In general most commonly data type is varchar2.

Numeric data type:

The following are the various data type related to numeric that are.

MDBMS III-B.Sc 85 compiled by J. Kishore Kumar Reddy

1. Number
2. Integer

3. Float
Number: The number data type can store the +ve numbers, -ve numbers, zero‟s,

fixed point numbers and floating point numbers.

Integer: Integer represents for signed integers only.

Float: The float represents for a floating point numbers.

Date: Date data type is used to store date and time in a table. Oracle data base

makes use of its own format to store date and time. The data consists of day,

month, year.

Time consists of HH, MM, SS
The format of the date is dd-mm-yy

The format of the time is hh-mm-ss

To view systems data and time we can use the SQL function called Sysdate().

Types of SQL Commands: SQL can be classified based on its functionality. SQL

provides a comprehensive set of commands for variety of tasks of including the

following.

DDL(Data Definition Language) = Create, Alter and Drop

DML(Data Manipulation Language) = Insert, Update, Delete

DQL(Data Query Language) = Select

DCL(Data Control Language) = Grant, Revoke

DAS(Data Administration Statements) = Start audit, Stop audit

TCS(Transaction Control Statements) = Commit, Rollback, Save point,

Set traction

DDL: The DDL is used to create, alter and delete data base objects, the commands

used are create, alter and drop.

DML: The DML commands allow the user to manipulating data. Manipulation data

refers commands used in DML is Insert, Update and Delete.

DQL: This is one of the most commonly used SQL statement. To retrieve or access

data from the table we use data query language. The SQL has only one DQL

statement is select.

DCL: The data control language consists of commands that control the user access

in the Data Base accepts DCL is mainly related to the security issues, i.e.

determining who has access in the database objects and what operations they can

MDBMS III-B.Sc 86 compiled by J. Kishore Kumar Reddy

perform on them. The task of the DCL to base administrators DBA is the

responsible for this language. The DCL commands are grant and revoke.

DAS: The DAS allow the user to perform audits and analysis on operations with in

the Data Base. They are also used to analyze the performance of the system. Two

data administration commands are start audit and stop audit.

TCS: The TCS are statements which are manage all the changes make by the DML

statements some of the transaction Commands are commit, rollback, save point

and set transaction.

SQL operators: Operators conditions are used to perform operations, such as

addition, subtraction or comparison on the data items in SQL statements. There

are two types of operators they are

1. Unary operator

2. Binary operator

Unary operator: The Unary operator operates on only one operand.

 Ex: To indicate that 10 is a –ve number we use the unary operator (-) and write -

10.

The unary operator are „+‟ and „-„ it will act as binary operators also.

Binary operator: The binary operator operates on two operands.

 The examples are multiplication and division etc.

Ex: 10*2, 10/2=Binary operations.

The SQL provides a variety of operators to perform calculations, comparisons etc.

1. Arithmetic operators.
2. Comparison or relational operators.

3. Logical operators.
4. Set operators.

Arithmetic operators: Arithmetic operators are used in SQL expressions to add,

sub, mul, div and negate data values. The result of this expression is a numeric

value.

The following table shows the various type of arithmetic operators.

Arithmetic operators:

MDBMS III-B.Sc 87 compiled by J. Kishore Kumar Reddy

Unary operator: +, - denotes +ve or –ve expressions.

Binary operator: „/‟ division, „*‟ Multiplication, „+‟ Addition, „–„ substraction

Comparison operators: These are used to compare one expression with another.

The result of a comparison is true, false and unknown.

The following table shows the various types of comparison operators in SQL.

OPERATOR DEFINITION

= equality

!= or <> not equal or in equality

> greater than

< less than

>= greater than or equal to

<= less than or equal to

IN equal to any member of

NOT IN not equal to any member of

IS NULL test for nulls

IS NOT NULL test for anything other than nulls

LIKE returns true when the first expression matches the pattern

WILD CARD(%) like allow and is case sensitive

ALL compares a value to every value in a list

ANY, SOME compare a value to each value in a list

EXISTS through if sub query returns at least one row

>=X AND <=Y between X and Y

Logical operators: The logical operators are used to produce a single result from

combining the two separate conditions. The following table shows the various logical

operators and their definitions used in SQL.

OPERATOR DEFINITION

AND Returns true if both component conditions are true, other
wise returns false

OR Returns true if either component conditions is true or both
conditions are true. Other wise the terms are false.

NOT Returns true if the condition is false other wise returns false.

When more than two search conditions are combined with AND, OR, NOT.

According the standard NOT has the higher precedence, followed by AND followed

by OR.

The truth table for evaluating the condition expressions is given below.

C1 C2 C1 AND C2 C1 OR C2

T T T T

MDBMS III-B.Sc 88 compiled by J. Kishore Kumar Reddy

T F F T

F T F T

F F F F

NOT T F

NOT F T

Set operators: Set operators combine the results of two separate queries in a

single result. Not all implementations support interests and minus. So, check your

implementation support these features before using them union all is supported by

all SQL based products. The following table shows the various set operators used in

SQL.

OPERATOR DEFINITION

Union Returns all distinct rows from both queries

UNION ALL Returns all rows from both queries

INTERSECT Returns all rows selected by both queries

MINUS Returns all distinct rows that are in the first query, but not in the

second query

What is query? And writing a query

“A query is a question” written in the Structured Query Language (SQL). As its

name denotes, SQL is best at writing queries. Anything that is a part of in RDBMS

table can be retrieved (access) at the users request using SQL.

A SQL query has five basic parts they are:

1. Select

2. From

3. Where

4. Order by

5. Group by

Select: This comprises of the list of columns that have to be displayed in the query

result. If you want all the columns of a table to be displayed, instead of writing

down all the column names you could simply use and “*”. This is a DQL statement.

From: This part identifies the source table of the columns. These could be a single

table or more than one table.

Where: This is an optional clause of a query. This part specifies, the limits that the

results have displayed according to users condition. If a query does not have a

where clause all the rows are selected.

MDBMS III-B.Sc 89 compiled by J. Kishore Kumar Reddy

Ex: if the librarian wants to see the list of all members who had barrowed books on

the date 3-9-08 the query that has to be return as select mem_code from member

where issue date=3-9-08.

Order by: This is an optional clause, that controls the order in which the rows to

be displayed by the query are ordered.

Ex: if the librarian wants the results to be ordered by mem_code to be written as

Select mem_code from member where issued date =3-9-08 order by mem-code.

Group by: This is an optional part of a query. It is used only when the results of

the query have to be grouped based on criteria. Expressions can be specified as

criteria for this clause.

Eg: If average salary of the employee in tent is to be found, the following query

can be written as select deptno, avg(pay) from employee group by deptno;

Starting SQL:

I. Click on the start button.

II. Pointing on programs group icon.

III. In the corresponding list point on oracle for windows-98 group

icon and within it click on SQL plus 8.0

W

I
N

D
O
W

S
98

Programs

MS-Word

S

Q
L

P
L
U

S
8.0

Settings MS-Excel

Find MS-Power

Point

Help MS-Access

Run Oracle for
Windows-

98
start

Figure - 1

 A screen as shown below after we have start the SQL.

Login

User name:

Pass Word:

Host String:

Figure - 2

OK Cancle

Scott

Oracle

MDBMS III-B.Sc 90 compiled by J. Kishore Kumar Reddy

 In fig-2 we enter user name as Scott and password is tiger.

IV. Click on OK button. The screen will appear as shown below.

V. Displaying the information about the product.

 Oracle SQL
Plus
File Edit Search Option Help

Copy right
Connected to Oracle 8.0

SQL>|

Figure – 3

In SQL prompt we can type all executable commands.

How to create a Table:

 CREATE statement is used to create a Table. It is a „DDL‟ command.

 The syntax is as follows:

Ex: The following example explains how to create a branch table with the fields

branch_code, address1, address2, city.

SQL> Create table branch (branch_code varchar2(20),

 Address1 varchar(10),

 Address2 varchar(10),

 City varchar2(10));

Table Created.

Table with constraints syntax:

Oracle SQL Plus
File Edit Search Option Help

Copy right
Connected to Oracle 8.0

SQL>|

Create table <table name> (Column1 data type (size),

 Column2 data type (size),

 ………………….. Column data type (size));

Create table <table name>

(Column name1 data type (size),.

Column name n data type (size),

Constraint <constraint name> primary key (column name1), constraint

<constraint name> foreign key (foreign_column_name) references

referenced_table [(primary_column_Name of referenced table)],

Constraint <constrant name> check (<conditions>));

MDBMS III-B.Sc 91 compiled by J. Kishore Kumar Reddy

How to view table structure:

To see the structure of the table the giving DESC statement.

The syntax as follows.

Ex: To view the structure of the branch table the command is

 SQL> Desc Branch;

Output:

Name Null Type

 Branch_code varchar2(10)

 Address1 varchar2(15)

 Address2 varchar2(20)

 City varchar2(10)

How to insert data:

To add records into the table INSERT statement is used. It is a DML command.

The syntaxes of the insert statement are as follows:

1. ADDING A ROW TO A TABLE:

The syntax is

Ex:

Let us insert data into the branch table by using insert statement as shown below

SQL>insert into branch values(„b1‟,‟avenue‟,‟xroad‟,‟piler‟);

1 ROW CREATED

2. INSERTING RECORDS THROUGH USER INTERACTION

 Inserting records through the INSERT statement is very tedious when we

have to insert a large number of records. We would have to give as many INSERET

statements as the number of records to be inserted. An alternative this is to prompt

the user for entering data and repeat the same command.

 Insert into <table name> values (‘&column name1’, ‘&column name2’

………………………………………. .. ‘&column name n’);

Desc <table name>;

INSERT into<table_name>values(value1 for column1,value2 for column 2,……);

MDBMS III-B.Sc 92 compiled by J. Kishore Kumar Reddy

The „&‟ would prompt the user to enter data. Single quotes are required if

the data type of the column is character or varchar data. If the data to be entered

is the numeric than the column name is not to be include with in quotes.

Ex: To insert the values to a branch table the statement is as follows.

SQL> Insert into branch values („&branch_code‟, „&address1‟, „&address2‟, „&city‟);

Enter value for branch_code : 001
Enter value for address1 : LBS Road
Enter value for address2 : Padmavathi Nagar

Enter value for city : Piler
SQL>/

Enter value for branch_code : 001
Enter value for address1 : LBS Road
Enter value for address2 : CR.Colony

Enter value for city : Piler
 To repeat the command for entering more rows enter back ward slash(/) at

the SQL prompt (SQL>).

3. INSERTING A PARTIALLY FILLED RECORD INTO A TABLE:

 If we do not want to insert data for all the columns a variant of INSERT can

be used.

The syntax is as follows:

How to display data:

 Data entered into the table can be seen by using SELECT statement. This is

a DQL statement.

A) To view all the columns: To view al the columns in the table the syntax is

follows:

 Here * indicates that the all columns will be displayed.

Ex: To display all the columns in the branch table the statement is

 SQL> Select * from branch;

Select * from <table name>;

Insert into <table_name> (column1,column3,…)values (value1 for

column1,value3 for column3,…..);

MDBMS III-B.Sc 93 compiled by J. Kishore Kumar Reddy

Output: branch_code address1 address city

 001 LBS Road Padmavathi Nagar Piler

 002 LBS Road CR Colony Piler

2 rows selected.

B) To view selected columns: To view selected columns enter the column

names, separated by coma (,) instead of *.

The syntax as follows:

 Ex: To display only branch_code, city from the branch table.

SQL> select branch_code, city from branch;

 branch_code City

 001 Piler

 002 TPT

2 rows selected.

C) Selecting Rows with Conditional Restrictions:

 To select partial table contents by placing restrictions on the rows to be

included in the output. This is done by adding conditional restrictions to the SELECT

statement, using the WHERE clause. The following syntax enables to specify which

rows to select.

Ex:

SQL> select branch_code ,city from branch where branch_code=001;

How to view existing tables:

Tab is a view which gives us the names of the table created by the current user.

The syntax is as follows:

SQL> Select Tname, Tab type from tab;

Output: Tname Tab type

 Select <selective column name1, selective column name2> from <table name>;

Select Tname, Tabtype from tab;

Select<columnlist>from <tablename> where <condition>

MDBMS III-B.Sc 94 compiled by J. Kishore Kumar Reddy

 Branch Table

 Student Table

 Transaction View

Where Tname is the column which display the name of table, view, index etc.

Tab type displays whether that object is a table, index, view etc.

How to modify table structure:

 All changes in the table structure are made by using the ALTER TABLE

command, followed by a keyword that produces the specific change we want to

make. Three options are available

1. ADD 2. MODIFY 3.DROP

a) Adding a new column: Management decides to store telephone numbers of

the branch office. We need to add a column to the branch table.

The syntax is as follows:

Ex: To add a telephone column in a branch table the statement is . ,. ,.,

SQL> Alter table branch add (telephone number (20));

 Table altered

SQL> desc branch;

Name Null Data type

Branch_code varchar2(10)
 Address1 varchar2(15)

 Address2 varchar2(20)
 City varchar2(10)
 Telephone number(10)

b) Modifying existing columns: It is found that the column city may not be

sufficient to hold large values. It‟s size needs to be increased.

The syntax is as follows:

 Ex: suppose we want to increase the size of the city column (15)

 Alter table <table name> add (new column name Data type (size));

Alter table <table name> modify (existing column name data type(size));

MDBMS III-B.Sc 95 compiled by J. Kishore Kumar Reddy

SQL> Alter table branch modify (city varchar(15));

Table altered.

SQL> desc branch;

Name Null Data type

Branch_code varchar2(10)

 Address1 varchar2(15)
 Address2 varchar2(20)

 City varchar2(15)
 Telephone number(10)

c) To remove column in the table:

 DROP allows to delete a column from a table.

 The syntax would be as follows

Ex: suppose we want to delete the address1 in the branch table

SQL>alter table branch drop address1;

How to Edit data (or) Advanced data updates:

We need to enter the telephone numbers of all the branch offices for this we need

to modify the existing records through the update statement the syntax is as

follows:

 There fore enter telephone number for branch offices, whose branch code is

„001‟ the statement is as follows:

SQL>Update branch set telephone=9909 where branch_code=‟001‟;

One row updated.

SQL> select * from branch;

branch_code address1 address2 city Telephone

001 LBS Road Padmavathi Nagar Piler 9909
002 LBS Road CR Colony Piler

 For enter telephone number to the second record the statement.

SQL> Update branch set telephone=9903 where branch_code=‟002‟;

One row updated.

SQL> select * from branch;

Update <table name>

set <column name1=value1>,

<Column name2=value2>,.(where<condition>);

Alter table <tablename> drop <column name>;

MDBMS III-B.Sc 96 compiled by J. Kishore Kumar Reddy

branch_code address1 address2 city Telephone

001 LBS Road Padmavathi Nagar Piler 9909

002 LBS Road CR Colony Piler 9903
Deleting records: It has been decided to delete branch_code 001 record from

the table “delete” statement is used. The syntax is as follows:

 Ex: To delete 001 record from branch table the statement is as follows.

SQL> Delete branch where branch_code = „001‟;

One row deleted.

SQL> Select * from branch;

branch_code address1 address2 city Telephone

002 LBS Road CR Colony Piler 9903

Duplicating table:

An entire table with its structure and can be duplicated by the following

statement. The syntax is as follows:

Ex: To duplicate branch table as branch, give the statement is as follows.

SQL> Create table branch1 as select * from branch;

Table created.

SQL> select * from branch;

Removing tables:

Tables which are no larger needed can be deleted from the data base by

“drop” statement. The syntax is as follows:

Ex: The remove branch1 table from the DB the statement is as follows:

SQL> drop table dranch1;

Table dropped.

SQL> Select Tname, tab type from tab;

Relational operators used in a Table:

DELETE <table name> (where <condition)>;

 Create table <new table name> as <select statement>;

Drop table <table name>;

MDBMS III-B.Sc 97 compiled by J. Kishore Kumar Reddy

1. Equal to: Equal to operator is used to compare two values for equality.

 Ex: To list al the first class passengers travel in a flight, the statement is as

follows:

SQL> Select pass_name, class reservation where class=‟F‟;

Pass_name Class

Kailash F

Tarun F

2. Not equal (<>): Not equal operator is used for inequality comparison.

Ex: To view the passengers “who have not booked for first class.” Give the

statement as shown below.

SQL> Select pass_name, class from reservation. Where class <> „F‟;

Pass_name Class

Kumar B

Pinky E

 3. In: To retrieve data which matches a specific list of values? In operator is

used.

 Ex: to view the passenger “Who have booked for either first or business class.”

Give the statement as shown below.

SQL> Select pass_name, class from reservation where class in („F‟,‟B‟);

Pass_name Class

Kailash F

 Tarun F

 Kumar B

4. Between and: When data needs to be retrieved for a “Specific range of values.”

Between and operator is used.

Ex: to view the

passengers list. Who traveled from 01-Aug-07 to 05-Aug-07 give statement as

shown below.

MDBMS III-B.Sc 98 compiled by J. Kishore Kumar Reddy

SQL> Select pass_name, class from reservation where date-Journey between „01-

Aug-07‟ and‟ 05-Aug-07‟;

Pass_name Date of Journey

Kailash 01-Aug-07
 Tarun 02-Aug-07
 Kumar 05-Aug-07

LIKE Special Operator:

 The LIKE special operator is used in conjunction with wildcards to find

patterns within string attributes. SQL allows the Wild cards characters

1) Like %
2) Like -

To make matches when the entire string is not known.

1) Like %:

When data needs to be retrieved which matches any sequence of zero or

more characters wild card %is used.

Ex: To view all the passengers whose name beginning with „K‟. Give the

statement as shown below.

SQL> Select pass_name, class from reservation where pass_name like „K%‟;

Pass_name Class
Kailash F
Kumaran B

2) Like_:

 To match a single character in a pattern ,wild card “_” is used.

Ex: Suppose, we want to find out whether a passenger named „Jerry‟ or „Jenny‟ or

someone having a name beginning with „Je‟ and fifth character „y‟ ,has made any

reservations, then the statement as shown below.

SQL>select pass_name from reservation where rtrim(pass_name)like „je_y‟;

 Output: PASS_NAME

 Jerry
 Jenny

Here we are not sure about what the 3rd and 4th character are. It could be

anything.

Rtrim() is a function which removes trailing and extra spaces in the string. It

is required when the length of the pattern that we are matching is not the same

length or size of the column.

MDBMS III-B.Sc 99 compiled by J. Kishore Kumar Reddy

Logical operators:

Logical operators AND, OR and NOT are used to produce a single result by

combining two separate conditions.

AND: When we want that the rows to be retrieved should satisfy both the

conditions then AND operator can be used.

Ex: To view that passengers of first class and who have avail for special service for

wheel chair (WC) give the statement as shown below.

SQL> Select pass_name, class, ss_code from reser where class=‟F‟ and

ss_code=‟WC‟;

OR: When we want that the rows to be retrieve should satisfy either of the

conditions. Then OR operator can be used.

Ex: To view the passengers of business class OR who have avail for special service

for wheel chair give the statement as follows:

SQL> Select pass_name, class, ss_code from reser where class=‟B‟ OR

ss_code=”WC‟;

NOT: Some times we need to negate a condition for this not operator can be

used. NOT can be used with all the operators such as is NOT NULL, NOT BETWEEN

and NOTIN, NOTLIKE etc.

Ex: To view passengers who are not flying in 01-Oct-07 and 03-Oct-07 give the

statement as shown below.

SQL> select pass_name, date-of-jou, class from reser where date-of-jou

NOTIN(‟01-Oct-07‟, ‟03-Oct-07);

ADVANCED SELECT QUERIES:

Ordering Data:

 Data that is displayed using select statement can be arranged in a particular

order. I.e. ascending or descending.

Ordering can be done in the ascending order or descending order. By

specifying the ASC or DESC parameter. If no parameter is specified the default is

the ascending order. The ordering can be done on signal column or multiple

columns.

Single column ordering: The order by option can operate on a single column.

MDBMS III-B.Sc 100 compiled by J. Kishore Kumar Reddy

Ex: To view the passengers names according to the class give the following

statement.

SQL> Select pass_name, flight no, date-of-jou, reser date, class from reservation

order by class;

Multiple column ordering: The order by option can operate on multiple columns

also. Ex: To view the passengers names branch wise, the following statement is

given below.

SQL> select pass_name, flight no, branch_name, flight_code from reser order by

branch_code, pass_name.

Advanced SQL

SQL JOINS

SQL JOIN OPERATORS

INTRODUCTION:

 A join is one of the most powerful features in RDBMS. The SQL Plus

allows, retrieving data from more than one table at a time. This retrieve is

done with the help of join. This powerful feature makes possible in retrieving

data from any number of tables.

Definition of joins: A join is a query that enables retrieval of rows from more

than one table having a common column b/w both the tables.

Types of Joins:

Depending upon the type of join condition used to make the query. Join can

be classified in to three types. They are…

1. Equi Join
2. Outer Join

3. Self Join

1) Equi Join (Natural join):

 This is simplest type of join that can be made. It is also called a natural join.

 The equi join has a predicate based on equality.
 This being the simplest type of joins that most commonly used.
 The join that are based on equal to operator (=) are called equi join.

 A Natural join returns all rows with matching values in the matching columns
and eliminates duplicate columns.

 The syntax of equi join is as follows.

MDBMS III-B.Sc 101 compiled by J. Kishore Kumar Reddy

Ex: Consider the following tables.

Table1:(student) Table 2:(Marks)

Regno Name College Regno Marks

101 A SHP 101 56

102 B GDC 102 65

103 A GDC 103 75

104 D SHP 104 85

105 E SHP 105 95

106 F GDC 106 75

 107 60

 Suppose we want to view the student details like regno, name, college,

marks. For viewing the above mentioned details, we have to refer to two tables

namely student, marks. For retrieving data from both tables we have to join those

two tables with one column i.e., common to both the tables.

Equi Join operation:

SQL> Select student.reg,name,college, marks from student, marks where

 student.regno=marks.regno;

Output:

Regno Name College
Marks

101 A SHP 56
102 B GDC 65
103 A GDC 75

104 D SHP 85
105 E SHP 95

106 F GDC 75

 In above table equi join select the values that are common in the tables.

Where as it does not select the values that are not common in the tables.

2) Outer Join: Outer join is a join it is similar to equi join with a small difference.

An outer join is different from all other types of joins as it returns.

Select <columns list>

From <tables name list>

Where table1.common column=table2.common column

And table3.common column=table n.common column;

MDBMS III-B.Sc 102 compiled by J. Kishore Kumar Reddy

1. All the rows that are returned by a simple join and

2. All the rows of one table that do not match with the rows in the other

table.

The equi-join does not select the values that are not common in the tables,

but in outer join does select the values that are not common in the tables. These

values can be selected by using (+) operator.

Syntax:

Ex:

SQL> Select student, Regno,Name,College,Marks

from student, marks where

 student.regno=marks.regno(+);

Output:

Regno Name College Marks

101 A CNR 56

102 B GDC 65
103 A GDC 75
104 D CNR 85

105 E CNR 95
106 F GDC 75

107 60

3) Self Join: (Joining a table itself): In some situations, we may find out it

necessary to join a table to itself, as though you were joining two separate tables.

This is refer to as a self join.

“In a self join, two rows from the same table combine to form a result row.”

Ex: Retrieve the names of the employees and the names of their respective

manages from the employee table.

Select <columns list>

from <tables list>

where table1.common column=table2.common column(+);

MDBMS III-B.Sc 103 compiled by J. Kishore Kumar Reddy

Records

Only in

Query

one

Records

Only in

Query

Two

Table_name: Employee

Emppo Name Managerno

E001 Vasu E002
E002 Ravi E005

E003 Rahul E004
E004 Raghu --
E005 Vinita --

SQL> Select emp.name, mngr.name manager from employee emp, employee mngr

 Where emp.mngrno=mngr.empno.

Output: Name Manager

 Vasu Ravi

 Ravi Vinita

SET OPERATORS:

SQL plus 8.0 supports the following 4 types of set operators. They are…

1. UNION
2. UNIONALL

3. INTERSECT
4. MINUS

The above set operators mainly used to combine two or more rows are to

display common rows from similar tables to produce results.

1) UNION: Union is a combination of two or more rows from similar tables to

produce results. This combination is done using the union operator.

“The Union operator combines two or more rows from similar tables and

returns only distinct values from them. It cannot display duplicate values (OR)

records.”

Output of the union class: (do not display duplicate records)

The syntax of the union operator is as follows:

Select<column names> from <table name1>

UNION

Select<column names> from<table name2>;

MDBMS III-B.Sc 104 compiled by J. Kishore Kumar Reddy

Ex: Consider the following tables:

Employee1 Employee2

ID NAME SALARY ID NAME SALARY

101 A 5000 106 G 9000

102 B 4500 107 H 4000

103 C 6000 108 I 6000

104 D 7000 109 J 3000

105 E 5000 110 K 8000

To display all the employee names from employee-1 and Employee-2 tables.

SQL> Select name from employee1

UNION

select name from employee2;

Output: Name

 A

 B
 C
 E

 F
 G

 H
 C
8 rows selected.

 The following restrictions on using a union are as follows.

 No. of columns in all the queries should be the same

 The data types of the columns in each query must be same.

 Aggregate functions can not be used with union class.

2) UNION ALL:

This operator is used to display all records from both the tables including

“duplicate, records.” So, it is very useful to find out the total number of records in

two tables. It is represented by a keyword “UNION ALL.”

MDBMS III-B.Sc 105 compiled by J. Kishore Kumar Reddy

Output of Union All:

 (It displays duplicate records

also)

The syntax is as follows:

Ex: Display all the employee names including duplicate records from both the

tables.

SQL> select name from employee1

 UNION ALL

 Select name from employee2;

Output: Name

 A

 B
 C

 E
 F
 G

 H
 C

 I
 A
10 rows selected.

Difference between Union and Union All:

UNION UNION ALL

Records

Only in

Query

one

 Records

 only in

 Query

 two

Common
columns

query 1

& 2

Select<column names> from <table name1>

UNION ALL

Select <column names> from <table name2>;

MDBMS III-B.Sc 106 compiled by J. Kishore Kumar Reddy

It displays distinct rows from both

tables. It cannot display duplicate

records.

It can display distinct rows and

duplicate records also.

Using the keyword UNION Using the keyword UNION ALL

We cannot find out the total number

of records in a table

We can find out the table numbers of

records in a table.

3) INTERSECT:

The intersect operator returns the rows that are “common” between the tables.

Output:

Syntax: The syntax Intersect class is as follows:

Query: Display the common employee names from employee1 and employee2

tables.

SQL> Select name from employee1

INTERSECT

select name from employee2;

Output: Name

 A

 C
Two rows selected.

4) MINUS:

The Minus operator combines the results of two queries and returns only those

values selected by the “First query and not the second.”

Output:

 Common
records

in both

queries

Select<column names> from <table name1>

INTERSECT

Select<column names> from <table name2>;

Records

only in

query 1

MDBMS III-B.Sc 107 compiled by J. Kishore Kumar Reddy

Syntax:

 List the employee names in employee_1 table but not in employee_2 table.

SQL> Select name from employee_1 MINUS select name from employee_2;

Ex: List the employee names in employee1 table but not in employee2 table.

SQL> Select name from employee1

 MINUS

 Select name from employee2

Output: Name

 B
 E
 F

3 rows selected.
Ex: List the employee names in employee2 table but not in employee1 table.

SQL> select name from employee2

MINUS

select name from employee1;

Output: Name
 G
 H

 I

VIEWS:

1. Introduction
2. Definition of View

3. Types of views and their syntaxes
4. Advantages of views
5. Disadvantages of views

6. Dropping views.

Introduction: After a table is created and populated with data, it may become

necessary to “prevent all users from accessing all columns of a table” for data

security reasons. “To reduce redundancy of data to the minimum possible,” Oracle

allows the creation as an object called a VIEW.”

Select <column names> from <table name1>

MINUS

Select <column names> from <table name2>;

MDBMS III-B.Sc 108 compiled by J. Kishore Kumar Reddy

Definition:

 “A view is a virtual table the content of which is taken from table with

the help of query, so view is an imaginary table.

 It is derived only from base table.

 The changes made in the based tables an automatically reflected in the

view.

 We can create any number of views to a base table.

 If the base table is dropped, automatically all of it‟s views will be

dropped.

Types of views: The views can be classified into two types. They are….

1. Simple view

2. Complex (OR) composite view.

1. Simple view: A “View” is said to be simple if it is created only on one base

table. The syntax of the simple view is as follows…

2. Composite view: A view is created “based on multiple tables.” It is said to

be composite view. The composite view is not updatable view. The syntax of

the composite view is as follows. . . .

Advantages of Views: Some of the major advantages are listed below:

1. Data Security: Views allow setup different security levels. For the same

base table, thus protecting certain data from people who do not have proper

authority.

Ex: For the use of the data entry clerk in the personal department a view of the

employee master table can be created, which excluse confidential details about a

person like his salary etc.

2. The views allow “The same data to be seen by different users in different

ways” at the same time.

3. Views can be used to hide complex queries.

4. It provide row and column level security.

Create view <view name> as select <statement> from <base table name>;

Create view <view name> as select <statement> from <table1, table2>

where <condition>;

MDBMS III-B.Sc 109 compiled by J. Kishore Kumar Reddy

5. To ensure efficient access paths.

6. To ensure proper data derivation.

7. To provide domain support.

8. To rename columns.

Disadvantages of views:

 If the definition of the view involves either a group by or a having class and

the outer most level, then the views are not updatable.

 The order by option cannot be used with a view.

 If a column of a view is derive from an aggregate function then the “view is

not updatable.”

 If the from class in the view definition involves multiple range variables, then

it is not updatable.

 If the definition of the view involves distinct at the outermost level, then that

view is not updatable.

 The updating is possible for simple views, but more complex views cannot be

updated, there are “read only.”

 A view is defined on a non updatable view is not updatable.

Dropping a view: A views are define by the create view statement there is no

alter view statement as in the case of base tables.

If we want to delete (or) remove an existing view we can do, by using the

drop view statement. The syntax of the drop view statement is as follows.

CONSTRAINS:

How to create constrains on the table:

 Constrains allowed to defined certain validations or restrictions. That has to

be followed while entering data into the tables. We have to create constrains on

two tables. Namely 1. Creating constrains on a new table

 2. Creating constrains on existing table.

Creating constrains on a new table: Constrains can be defined at two levels

they are 1. Column level

2. Table level

Drop view <view name>;

MDBMS III-B.Sc 110 compiled by J. Kishore Kumar Reddy

Column Constrains: The syntax of column constrains is as follows. . . .

Table constraint: The syntax is as follows:

Ex: Let us create a table fare with certain data enter restrictions.

Route-code should be a primary key

Route-dese, source and destination should not be empty.

First class fare should be greater than zero.

Business class fare should be less than first class.

Economy class fare should be less than business class.

SQL> Create table fare (route_code varchar2(10) constraint route_pk primary key,

 route_dese varchar2(15) not null, source varchar2(12) not null, destination

 varchar2(10) not null, first_fare number(5) constraint first_fare_zero check

 (first_fare>0), bus_fare number(5),Eco_fare number(5), constraint
 bus_fare_greater_first check(bus_fare<first_fare), constraint

 eco_fare_greater_business check (eco_fare<bus_fare));

Creating constrains and Existing tables: Constrains can also be enclosed on the

existing tables. The syntax is as follows:

Ex: Let as make branch_code of branch table a primary key.

SQL> Alter table branch add constraint branch_pk primary key (branch_code);

 Table altered.

Create table <table name>

(<column name1 data type(size) constraint <constraint name> references

reference_table[(primary_colume_name of referenced table)],

Column name3 data type(size) constraint <constraint_name> check [<condition>],

column name4 data type (size) not null);

Create table <table name>

(Column name1 data type (size),.

Column name n data type (size),

Constraint <constraint name> primary key (column name1), constraint <constraint

name> foreign key (foreign_column_name) references referenced_table

[(primary_column_Name of referenced table)],

Constraint <constrant name> check (<conditions>));

Alter table <table name> add constraint <constraint name> <constraint>;

MDBMS III-B.Sc 111 compiled by J. Kishore Kumar Reddy

SQL> Desc branch

 Name Null Type

 Branch_code Not null Varchar2(10)

Grouping data from tables in SQL:

In SQL for grouping data the following classes used.

1. Grouping clause.

2. Having clause.

Group by clause:

The group by clause is another section of the select statement. This is

optional clause. This tells oracle to group rows based on distinct values that exist

for specified columns. That is it “creates a data set containing several sets of

records grouped together based on a condition.

Syntax: the syntax group by clause is

Ex: Retrieve the product numbers and the total quantity ordered for each product

from the sales order details table.

Sales_order_details:

SQL>

Select product no, sum (qtyordered) from sales_order_details groupby productno;

Output:

 Productno Qtyorder

 P00001 16

 P00002 4

 P00003 2

 P00004 4

 P00005 10

 P00006 19

Order No Product No Qtyordered Qtydisp

01001 P00001 10 10
01001 P00004 3 3

01001 P00006 7 7
01002 P00002 4 4
01002 P00005 10 10

01003 P00003 2 2
01004 P00001 6 6

01005 P00006 4 4
01005 P00005 1 1
01006 P00006 8 8

Select columns list from <table name> group by <column>;

MDBMS III-B.Sc 112 compiled by J. Kishore Kumar Reddy

Note: The aggregate functions are also used in group by option.

Having clause:

The having clause can be used in conjunction with the group by clause.

Having imposes a condition on the group by clause. Which further filters the groups

created by the group by clause.

Syntax: The syntax of group by with having clause is. . . .

Ex: Retrieve the product number and the total quantity ordered for products,

P00001, P00004 from the sales order details table.

SQL> Select product, sum(qtyorder) from sales_order details groupby product no

having product no=‟P00001‟ or „P00004‟;

Output: Productno Qtyorder

 P00001 16

 P00004 4

PROGRAMING LANGUAGE STRUCTURED QUERY LANGUAGE (PL/SQL)

INTRODUCTION

1. SQL does not support programming. It is used to write single line statements

called Quarries.

Select <column list> from <table name> groupby column having <condition>;

MDBMS III-B.Sc 113 compiled by J. Kishore Kumar Reddy

2. To support programming constructs, additional features are added to SQL

and name it as PL/SQL.

3. PL/SQL is very useful to develop programming.

4. PL/SQL supports almost all programming constructs like variables, conditional

statements, looping, etc.

PL/SQL BLOCK STRUCTURE
 The programming area in PL/SQL is called PL/SQL block. This block mainly

contains three parts. They are.

1. Declarative part

2. Executable part

3. Exception handling part

It is shown in the following structure
 SQL>Declare

 ……………

 …………… variable declaration

 ……………

 Begin

 Statement 1;

 Statement 2; Executable part

 Statement 3;

 End ;

Exception Error handling part

 The above syntax shows that every PL/SQL block declarative part should be

indicated with a key word called “declare”. Executable part must be enclosed with

in begin and end key words. Exception handling part can be indicated with a key

ward called it “Exception”.

Input and Output statement in PL/SQL:

Input statement

 The input statement in PL/SQL is & operator.

& Operator :-

It is to give the input values to the variables.

 Ex:- a:= &a;

 x:= &x; etc. . . .

MDBMS III-B.Sc 114 compiled by J. Kishore Kumar Reddy

Output statement

 The out put statement in PL/SQL is

dbms_output.put_line („message‟ / variable);

Ex:- SQL> dbms_output.put_line („Welcome to Oracle‟);

Set server output on

 This command is used to open server. RDBMS can display the result of any

program, only when the server is on.

 Syntax:- Set server output on; <enter>

PL/SQL Data types

 PL/SQL supports and allows all SQL data types like number(n), Int, float,

Varchar, varchar2, etc.

PL/SQL Operators

 PL/SQL allows all SQL operators like arithmetic operators, relational

operators, logical operators, etc.

Example programs:

Q Write a PL/SQL program to add two numbers.

SQL> Declare
2 a number(3);

3 b number(3);
4 c number(3);

5 Begin
6 a:=&a;
7 b:=&b;

8 c:=a + b;
9 dbms_output.put_line(„result‟||c);

10 End;
 / <enter>

PL/SQL procedure successfully completed
SQL> / <enter>

Enter value for a=10 <enter>
Enter value for b=20 <enter>
Result=30

PL/SQL procedure successfully completed.
SQL>

Q Write PL/SQL program to calculate area of a rectangle.

SQL> Declare
2 Len number(3);

3 B number(3);
4 A number(3);

MDBMS III-B.Sc 115 compiled by J. Kishore Kumar Reddy

5 Begin
6 Len:=&len;

7 B:=&b;
8 A:=len*b;

9 Dbms_output.put_line („Area=‟||a);
10 End;

/ <enter>

Enter value for len=20

Enter value for b=5
Area=100
PL/SQL procedure successfully completed;

Q Write PL/SQL program to calculate simple interest and total amount.

SQL> Declare

2 p number(5);
3 t float;
4 r float;

5 I float;
6 A float;

7 Begin
8 P:=&p;
9 T:=&t;

10 R:=&r;
11 I:=(P*T*R)/100;

12 A:= P+ I;
13 dbms_output.put_line („Simple Interest=‟||i);
14 dbms_output.put_line („Total Amount=‟||a);

15 End;
/ <enter>

Enter value for p=500
Enter value for t=5

Enter value for r=5
Simple Interest=125

Total Amount=625
PL/SQL procedure successfully completed
SQL>

BRANCHING

 Branching is a process in which the control will be jumped from one

statement to another statement. In a program, they jumping may be based on

condition or without condition.

 Branching with condition is called conditional branching and the

branching without condition called unconditional branching.

For conditional branching SQL provides the following statements.

MDBMS III-B.Sc 116 compiled by J. Kishore Kumar Reddy

1. If
2. If then else

3. If then else if

1. If Statement
 It is used for conditional branching purpose in SQL.

If:

 It is used to test only one condition. It returns when if the condition is true.

Otherwise the condition will exit. Every if statement should be ended with key word

“End if”.

 Syntax:- If<Condition> then
 Statement 1;
 End if;

 Ex: If (Num>0) then
 dbms_output.put_line („Positive number=‟||num);

 End if;

2. If then else

 It is used to test a condition it returns true if the condition is true. It returns

false if the condition is false.

 Syntax:- If <condition> then
 Statement 1;

 Else;
 Statement 2;

 End if;

 In the above syntax statement1 will be executed when the condition is true.

Otherwise statement2 will be executed.

 Ex:- If (a>b) then
 dbms_output.put_line („a is big‟||a);

 Else
 dbms_output.put_line („b is big‟||b);

 End if;

3. If then Else if
 This statement is used to test multiple conditions one by one sequentially.

 Syntax:- If <condition1> then
 Statement1;

 Else if <condition2> then
 Statement2;

 Else if <condition3> then
 Statememtn3;
 ……………..

 Else
 Statement n;

MDBMS III-B.Sc 117 compiled by J. Kishore Kumar Reddy

 End if;
 In the above syntax if the condition1 is true. Statement 1 will be executed.

If condition 1 is false, it will go for checking condition2 and so on.

 Ex:- If((a>b) and (a>c)) then
 dbms_output.put_line (a‟ is big‟||a);
 Else if (b>c) then

 dbms_output.put_line(„b is big‟||b);
 Else

 dbms_output.put_line(„c is big‟||c);
End if;

Q Write a PL/SQL program to test whether the given number is positive

or not.

SQL> Declare
2 Int a;

3 begin
4 a:=&a;
5 if (a>0) then

6 dbms_output.put_line(„positive=‟||a);
7 end if;

8 end;
SQL>/ <enter>
Enter value for a=11 <enter>

Results= positive 11 PL/SQL procedure successfully completed.

Q Write PL/SQL program to find biggest number between two numbers.

SQL> Declare

2 Int a;
3 Int b;
4 begin

5 a:=&a;
6 b:=&b;

7 if (a>b) then
8 dbms_output.put_line(„a is big:=‟||a);
9 else

10 dbms_output.put_line(„b is big:=‟||b);
11 end if;

12 end;

Q Write PL/SQL program to test whether it is even number or odd

number.
SQL> Declare

2 Int a;
3 begin

4 a:=&a;
5 if (a mod2=0) then
6 dbms_output.put_line(„Even number:=‟||a);

7 else
8 dbms_output.put_line(„odd number:=‟||a);

9 end if;
10 end;

MDBMS III-B.Sc 118 compiled by J. Kishore Kumar Reddy

SQL> / <enter>

Q Write PL/SQL program to find biggest among three numbers.

SQL> Declare

2 Int a;
3 Int b;

4 int c;
5 begin
6 a:=&a;

7 b:=&b;
8 c:=&c;

9 if ((a>b) and (a>c)) then
10 dbms_output.put_line(„a is big:=‟||a);
11 else if (b>c) then

12 dbms_output.put_line(„b is big:=‟||b);
13 else

14 dbms_output.put_line(„c is big:=‟||c);
15 end if;
16 end;

SQL> / <enter>
Enter value for a=10

Enter value for b=20
Enter value for c=15
Results = b is big = 20

Q Write a PL/SQL program to find whether the given number is positive

or negative or zero.
SQL> Declare

2 Int a;
3 begin
4 a:=&a;

5 if (a>0) then
6 dbms_output.put_line(„positive‟||a);

7 else if (a<0) then
8 dbms_output.put_line(„negative‟||a);
9 else

10 dbms_output.put_line(„zero‟||a);
11 end if;

12 end;
SQL> / <enter>
Enter value for a =0

Results = zero
PL/SQL procedure successfully completed.

Q Write a PL/SQL program to find smallest number among three

values.
SQL> Declare
2 Int a;

3 Int b;
4 Int c;

5 begin
6 a:=&a;

MDBMS III-B.Sc 119 compiled by J. Kishore Kumar Reddy

7 b:=&b;
8 c:=&c;

9 if ((a<b) and (a<c)) then
10 dbms_output.put_line(„a is small=‟||a);

11 else if (b<c) then
12 dbms_output.put_line(„b is small=‟||b);
13 else

14 dbms_output.put_line(„c is small=‟||c);
15 end if;

16 end;
SQL> / <enter>
Enter value for a =10

Enter value for b =5
Enter value for c = 25

Results = b is small = 5 PL/SQL procedure successfully completed.

LOOPING

 Looping is a process in which a block of statements will be executed

repeatedly until given condition is true. PL/SQL provides two types of looping

statement they are:

1. For loop Statement
2. While loop Statement

A) For loop Statement

 This looping statement will execute loop body repeatedly initial value to final

value for every execution. The for loop counter will be incremented by one. So,

by using this statement we can also find the number of iterations. This statement

also called recursive looping statement.

 Syntax:- for counter variable in [reverse] initial vale.. final value
 Loop

 ……………
 …………… loop body

 ……………
 End loop;

Here reverse is used to print the given ranged values in reversing order.
 Ex:- for I in 1 .. 10 Results:

 Loop 1 to 10

 dbms_output.put_line(i);

 End loop

 For I in reverse 1 .. 10 10 to 1

 Loop

 dbms_output.put_line (i);

MDBMS III-B.Sc 120 compiled by J. Kishore Kumar Reddy

 End loop

Note: Every for loop statement should be ended with “End loop” statement.

Q Write PL/SQL program to print natural numbers from 1 to 10.

SQL> Declare
2 Int i;

3 Begin
4 For I in 1..10
5 Loop

6 dbms_output.put_line (i);
7 End loop;

8 End;
SQL> / <enter>

Q Write a PL/SQL program to display numbers in reversing order from
10 to 1

SQL> Declare
9 int i;

10 Begin
11 For I in reverse 1..10
12 Loop

13 dbms_output.put_line (i);
14 End loop;

15 End;
SQL> / <enter>

Q Write a PL/SQL program to print natural number up to given limit.

SQL> Declare

2 I number(3);
3 N number(3);

4 Begin
5 N:=&n;
6 For I in 1..n;

7 Loop
8 dbms_output.put_line (i);

9 End loop;
10 End;

SQL> / <enter>

Enter value for n=15
Results = 1 2 3 4 5 6 7.. . 15. PL/SQL procedure successfully completed.

Q Write a PL/SQL program to print natural numbers from 20 to given

limit in reversing order.
SQL> Declare
2 I number(3);

3 N number(3);
4 Begin

5 N:=&n;
6 For I in reverse 20..n
7 Loop

8 Dbms-output. Put-line(i);

MDBMS III-B.Sc 121 compiled by J. Kishore Kumar Reddy

9 End loop;
10 End;

SQL> / <enter>
Enter value for n= 30

Results = 30 29 28 271
PL/SQL procedure successfully completed.

B) While Loop
 This looping statement can execute loop body based on a condition. This

statement with check the condition first if the condition is true loop body will be

executed. Otherwise loop will be terminated.

Syntax:- While <condition>

 Loop
 Statement1;

 Statement2;
 …………… Loop body
 ……………

 ……………
 End loop;

 Ex: While (i<10)
 Loop
 dbms_output.put_line (i);

 I:=I + 1;
 End loop;

Q Write a PL/SQL program to print natural number from 1 to 10.

SQL> Declare
2 I number(5);

3 Begin
4 I:=1;

5 While (i<=10)
6 Loop
7 dbms_output.put_line (i);

8 I:=I + 1;
9 End loop;

10 End;

Q Write PL/SQL code to print even numbers up to 20.

SQL> Declare
2 I number(5);

3 Begin
4 I:=0;

5 While (i<20)
6 Loop
7 dbms_output.put_line (i);

8 I:= I + 2;
9 End loop;

MDBMS III-B.Sc 122 compiled by J. Kishore Kumar Reddy

10 End;

Q Write a PLSQL program to print a number in reverse order:

SQL> Declare

N number(3):=&n;
Rem number(5);

Rev number(5):=0;
Begin

While (n<>0);
Loop
Rem:=mod(n,10);

Rev:=rev*10 + rem;
N:=float (n/10);

End loop;
Dbms-output. Put-line („reverse number=‟||rev)

End;
/ <enter>

Enter value for n= 786

Reverse number= 687

PLSQL procedure successfully completed

Q Write a PL/SQL program to print odd number up to given limit.

SQL> Declare
2 I number(5);

3 N number(3);
4 Begin

5 N:=&n;
6 I:=1;
7 While (i<=n)

8 Loop
9 dbms_output.put_line (i);

10 I:= I + 2;
11 End loop;
12 End;

Q Write a PL/SQL program to swap to numbers.

SQL> Declare
2 Int a;

3 Int b;
4 temp int;
5 begin

6 a:=&a;
7 b:=&b;

8 temp:=a;

MDBMS III-B.Sc 123 compiled by J. Kishore Kumar Reddy

9 a:=b;
10 b:=temp;

11 dbms_output.put_line („a=‟||a);
12 dbms_output.put_line („b=||b);

13 end;

Q Swapping without using third variable or temporary variable.

SQL> Declare
2 Int a;

3 int b;
4 begin

5 a:=&a;
6 b:=&b;
7 a:=a + b;

8 b:=a – b;
9 a:=a – b;

10 dbms_output.put_line („after swapping‟);
11 dbms_output.put_line („a=‟||a);
12 dbms_output.put_line („b=‟||b);

13 end;

CURSORS

MDBMS III-B.Sc 124 compiled by J. Kishore Kumar Reddy

 Cursor is a private working area or a cursor is a temporary working area. It

is mainly used for retrieving multiple rows based on multiple attributes at a

time. Cursors are very useful to update big structure of a table at a time.

Cursors can calculate calculation according to given conditions and fetching rows

into base tables. Cursors are mainly divided into two types in SQL. They are:

1. Implicit cursors
2. Explicit cursors

1. Implicit cursors: These are automatically executed by SQL engine internally.
Ex: Create table, Alter table, Create view, Update etc.

2. Explicit cursors: The cursors which are coded by data base programmers are

called Explicit cursors.

The execution of explicit cursors is depending on the data base programmers

code all the users created cursor are explicit cursors.

Cursors operations:

Every explicit cursor can be operated by using the following cursor operation.

1. Declaring a cursor
2. Opening a cursor
3. Fetching rows in to cursor

4. Closing a cursor

1. Declaring a cursor
 Before using any cursor that should be declared first. In one PL/SQL

program we may use many cursors; all cursors must be defined under declarative

part of the PL/SQL block. A cursor is a data base object, it is declared by using the

following syntax:

Syntax: Cursor <cursor name> is <select statement>;

 Ex: Cursor C1 is select * from Emp;

2. Opining a cursor
 In order to work with cursor, we must open it after creation. To open a

cursor open key word is used.

Syntax: Open cursor name;

Ex: Open C1;
3. Fetching rows in to cursor

 To calculate values host variables are useful after calculations. The values

must be fetched to host variables. To do so fetching cursor is used.

Syntax: Fetch<cursor name>into host variables,

Ex: Fetch C1 into TA DA HRA;

MDBMS III-B.Sc 125 compiled by J. Kishore Kumar Reddy

Fetching must be performing to all rows successfully. So it must be included

with in looping statement.

4. Closing cursor

 After working successfully with a cursor, it must be closed when we close a

cursor. It will releases all resources. To close a cursor close key word is used.

 Syntax: Close<cursor name>;
 Ex: Close C1;

CURSOR ATTRIBUTES

 Cursor attributes are used to know the status of the cursor at a particular

time. Cursor attributes are,.,.,.,.,.,

1. % is open
2. % row count

3. % row type
4. % is found

5. % not found
1. %is open: This attribute is used to know whether a cursor is opened or not. It

returns true if the cursor is opened, otherwise it returns false.

 Syntax: <cursor name>%is open;

 Ex: C1 %is open

2. %row count: It provides the information about number of rows successfully

fetched into tables currently.

 Syntax: <cursor name>%row count;

 Ex: C1%row count

3. %row type: It can equates the data types of table attributes and host

variables, this attribute always be used while defining a cursor.

 Syntax: <cursor name>% row type;

 Ex: cursor C2 is select *From Emp C2% row type;
4. %is found: It provides the information about resent fetch operation. If the

fetch statement is successfully completed it returns true other wise it returns false.

 Syntax: <cursor name>% found;

 Ex: if C2 is % found then
 Update Emp set net Sal:=TA + HRA + DA
5. %not found: This attribute is used to find whether record are available or not in

the cursor. Cursor operations can be perform until %not found is false.

 Syntax: <cursor name> %not found;

 Ex: Loop
 Fetch C1 into TA, DA, BASIC, HRA

 Exit when C1% not found;
 Net sal:= basic + TA + DA

MDBMS III-B.Sc 126 compiled by J. Kishore Kumar Reddy

 End loop

PROGRAMS BASED ON CURSORS

Q Write a PL/SQL program to process 10th class result. Creation of 10th

class result table.
SQL> create tenth(htno number(10) primary key, name varchar2(10), Tel

number(3), Eng number(3), Hin number(3), Maths number(3), Sci
number(3), SS number(3), Total number(4), Result varchar2(10));

Table Created:
SQL> Insert into tenth(htno, name, Tel, Eng, Hin, Maths, Sci, SS)
values(205156730,‟rani‟,50, 60, 70, 70, 50, 70); <enter>

1 Row created
 Similarly enter 10 rows

Q PL/SQL program for updating total and results.
SQL> Declare

Cursor ten_cur is select htno, Tel, Eng, Hin, Maths, Sci, SS from tenth;
Hno number(10);

Nme varchar2(10);
Tel number(3);

Eng number(3);
Hin number(3);
Mat number(3);

Sci number(3);
SS number(3);

TT number(4);
Res number(10);
Begin

Open ten_cur;
Loop

Fetch ten_cur into hno, Tel, Eng, Hin, Maths, Sci, SS;
Exit when ten_cur %not found;
TT:= Tel + Eng + Hin + Maths + Sci + SS;

Update tenth set total=TT where, htno=hno;
If ((Tel<35) or (Eng<35) or (Hin<35) or (Maths<35) or (Sci<35) or

(SS<35)) then
Update tenth set result:=‟fail‟ where htno=hno;
Else if (TT>=360) then

Update tenth set result:=‟first‟ where, htno=hno;
Else if ((TT.=300) and (TT<360)) then

Updae tenth set result:=‟second‟ where, htno=hno;
Else
Update tenth set result=‟pass‟ where, htno=hno;

End if
End loop

Close ten_cur
End;
SQL> / <enter>

PL/SQL procedure successfully completed

SQL> select *from tenth;

MDBMS III-B.Sc 127 compiled by J. Kishore Kumar Reddy

TRIGGERS

 Use of database triggers

 Basic parts in triggers

 Types of triggers

 Dropping a trigger

Triggers: A trigger PL/SQL block associated with a table. Trigger can be fire

implicitly (internally) when a particular event has occurred.

By using “triggers we can restrict the end user in performing invalid DML

statements.” The DML statements are insert, delete and update.

Uses of database Triggers:

 A trigger can permit „DML‟ statements against a table.

 The triggers can be used to prevent invalid transactions.

 Enforce complex security authorizations.

MDBMS III-B.Sc 128 compiled by J. Kishore Kumar Reddy

Basic parts in Triggers:

Triggers have three parts namely:

 The Event

 The Condition and

 The Action

 These parts are reflected in the coding structure of triggers.

Types of Triggers:

 There are twelve basic types of triggers. A trigger‟s type is defined by the

type of triggering transaction and by the level at which the trigger is executed. The

following describe these classifications:

 Row-level triggers

 Statement-level triggers

 Before and after triggers

Row-level triggers:

 Row-level trigger, trigger once for each row in a transaction. These types of

triggers are very useful in cases like audit trails, where you want to track the

modification made to the data in a table. Different RDBMS have implemented the

row-level triggers in different ways. For example, in ORACLE‟s PL/SQL, you can

create a row-level trigger by using the FOR EACH ROW clause in the CREATE

TRIGGER command.

Statement-level triggers:

 Statement-level triggers execute once for each transaction. For example, if a

single transaction inserted 700 rows into a table then a statement-level trigger on

that table will be executed only once. Statement-level triggers therefore are not

often used for data related activities. They are normally used to enforce additional

security measures on types of transactions that may be performed on a table.

Statement-level triggers are the default type of triggers created using CREATE

TRIGGER command.

Before and after triggers:

 Since triggers occur because of events, they may set to occur immediately

before or after those events. Since the events that execute triggers are database

MDBMS III-B.Sc 129 compiled by J. Kishore Kumar Reddy

transactions, triggers can be executed immediately before or after INSERT s,

UPDATE s and DELETE s.

 Within a trigger, you will be able to reference the old and new values

involved in the transaction. The access required for the old and new data may

determine which type of trigger you need. Old refers to the data, as it existed prior

to the transaction. Updates and deletes usually reference old values. New values

are the data values that the transaction creates. They are referred by the keyword

NEW.

 If you need to set a column value in an inserted row via your trigger, then

you will need to use a BEFORE INSERT trigger in order to access the NEW values.

Using an AFTER INSERT trigger would not allow you to set the inserted value, since

the row will already have been inserted into the table.

 AFTER row-level triggers are frequently used auditing applications, sine they

do not fire until the row has been modified. Since the row has been successfully

modified this implies that it has successfully passed the referential integrity

constraints defined for that table.

The syntax for the CREATE TRIGGER

CREATE [or REPLACE] TRIGGER trigger_name

[BEFORE|AFTER]

[DELETE|INSERT|UPDATE[OF column_name]]

ON[user.]able_name

[FOR EACH ROW][WHEN condition]

[PL/SQL block];

 Clearly there is a great deal of flexibility in the design of a trigger. The

BEFORE and AFTER keywords indicate whether the trigger should be executed

before or after the triggering transaction. The DELETE, INSERT and UPDATE

keywords indicate the type of data manipulation that will constitute the triggering

event.

 When the FOR EACH ROW clause is sued, the trigger will be arrow-level-

trigger, otherwise, it will be a statement-level trigger. The WHEN clause is used to

further restrict when the trigger is executed. The restrictions enforced in the WHEN

clause may include checks of old and new data values.

 The CREATE TRIGGER command is used to create or replace the Database

triggers. For example, Suppose we want to monitor any changes to the amount

MDBMS III-B.Sc 130 compiled by J. Kishore Kumar Reddy

that is grater than 40%. The following row-level BEFORE UPDATE trigger will be

executed only if the new value of the amount column is more than 40% its old

value.

 CREATE TRIGGER ledger_bef_updrow

 BEFORE UPDATE ON ledger
 FOR EACH ROW

 WHEN (NEW.amount/OLD.amount>1.4)
 BEGIN
 INSERT INTO Ledger_audit

 VALUES(:OLD.Action_date,:OLD.action,:OLD.amount,:OLD.item)
 END;

UNIT-4

Transaction Management in DBMS Environment

The Information system

 Basically, a database is a carefully designed and constructed repository of

facts. The fact repository is a part of a larger whole known as an information

system.

An information system provides for data collection, storage, and retrieval.

It also facilitates the transformation of data into information and the management

of both data and information. Thus a complete information system is composed of

people, hardware, software, the database(s), application programs, and procedures.

Systems analysis is the process that establishes the need for and the extent of an

information system. The process of creating an information system is known as

systems development.

 Within the framework of systems development, applications transform data

into the information that forms the basis for decision making. Applications usually

produce formal reports, tabulations, and graphic displays designed to procedure

insight. The below figure illustrates that every application is composed of two

parts: the data and the code (program instructions) by which the data are

transformed into information. Data and code work together to represent real-world

business functions and activities.

Generating information for decision making

 Information

 Application Decision

 Code

MDBMS III-B.Sc 131 compiled by J. Kishore Kumar Reddy

The performance of an information system depends on a triad of factors:

 Database design and implementation.

 Application design and implementation.

 Administrative procedures.

The information that is generated is accurate, timely and relevant, then these

systems will go a long way in helping the organization realizing its goals.

The Systems Development Life Cycle (SDLC)

 The SDLC traces the history (life cycle) of an information system.

Perhaps more important to the system designer, the SDLC provides the big picture

within which the database design and application development can be mapped out

and evaluated.

 The traditional SDLC is divided into five phases: planning, analysis,

detailed systems design, implementation, and maintenance. The SDLC is an

iterative rather than a sequential process.

The Systems Development Life Cycle (SDLC)

 Phase Action(s)

Planning

Analysis

Detailed systems

design

Implementation

Initial assessment

Feasibility study

User requirements

Existing system evaluation

Logical System design

Detailed system specification

Coding, testing, and debugging

Installation, fine-tuning

0

2 0

4 0

6 0

8 0

10 0

1st Qt y. 2 n d Qt y. 3 r d Qt y. 4 t h Qt y.

East

West

Nor t h

Sout h

0

10

2 0

3 0

4 0

5 0

1 2 3 4 5 6 7 8 9 10

Ser ies1

Data

1101000010010

0001001101110

1011100010101

1101100011010

MDBMS III-B.Sc 132 compiled by J. Kishore Kumar Reddy

1. PLANNING

 The SDLC planning phase yields a general overview of the company and its

objectives. An initial assessment of the information-flow-and-extent requirements

must be made during this discovery portion of the SDLC. Such as assessment

should answer some important questions:

 Should the existing system be continued?

 Should the existing system be modified?

 Should the existing system be replaced?

If it is decided that a new system is necessary, the next question is whether

it is feasible. The feasibility study must address the following:

 The technical aspects of hardware and software requirements. The

decisions might not be vendor-specific, but they must address the

nature of the hardware requirements (PC, midrange, or mainframe)

and the software requirements (single or multi-user operating

systems, database type and software, programming languages to be

used by the applications, and so on).

 The system cost.

2. ANALYSIS

 A microanalysis must be made of both individual needs and organizational

needs, addressing questions such as:

 What are the requirements of the current system‟s end users?

 Do those requirements fit into the overall information requirements?

The analysis phase of the SDLC is, in effect, a thorough audit of user

requirements.

The existing hardware and software systems are also studied during the

analysis phase. The result of analysis should be a better understanding of the

system‟s functional areas, actual and potential problems, and opportunities.

Maintenance
Evaluation

Maintenance

Enhancement

MDBMS III-B.Sc 133 compiled by J. Kishore Kumar Reddy

 Along with a study of user requirements and the existing systems, the

analysis phase also includes the creation of a logical systems design.

The logical design must specify the appropriate conceptual data model, inputs,

processes, and expected output requirements.

 When creating a logical design, the designer might use tools such as data

flow diagrams (DFDs), hierarchical input process output (HIPO) diagrams, and

entity relationship (ER) diagrams.

3. DETAILED SYSTEMS DESIGN

 In the detailed systems design phase, the designer completes the design of

the system‟s processes. The design includes all necessary technical specifications

for the screens, menus, reports, and other devices that might be used to help make

the system a more efficient information generator.

4. IMPLEMENTATION

 During the implementation phase, the hardware, DBMS software, and

application programs are installed and the database design is implemented. During

the initial stages of the implementation phase, the system enters into a cycle of

coding, testing, and debugging until it is ready to be delivered.

5. MAINTENANCE

 Almost as soon as the system is operational, end users being to request

changes in it. Those changes generate system maintenance activities, which can be

grouped into three types:

 Corrective maintenance in response to systems errors.

 Adaptive maintenance due to changes in the business environment.

 Perfective maintenance to enhance the system.

THE DATABASE LIFE CYCLE (DBCL)

 Within the larger information system, the database, too, is subject to a life

cycle. The DBLC contains six phases: database initial study, database

design, implementation and loading, testing and evaluation, operation, and

maintenance and evolution.

1. THE DATABASE INITIAL STUDY

 Examining the current system‟s operation within the company, the designer

must determine how any why the current system fails. That means spending a lot

of time talking with (but mostly listening to) end users.

MDBMS III-B.Sc 134 compiled by J. Kishore Kumar Reddy

 Depending on the complexity and scope of the database environment, the

database designer might be a lone operator or part of a systems envelopment team

composed of a project leader, one or more senior systems analysis, and one or

more junior systems analysts.

The Database Life Cycle (DBLC)

The overall purpose of the database initial study is to:

 Analyze the company situation.

 Define problems and constraints.

 Define objectives.

 Define scope and boundaries.

ANALYZE THE COMPANY SITUATION

 To analyze the company situation, the database designer must discover what

the company‟s operational components are, how they functions, and how they

interact.

These issues must be resolved:

 Phase Action(s)

Database initial

study

Database design

Implementation

and loading

Testing and

evaluation

Operation

Analyze the company situation

Define problems & constraints

Define objectives
Define scope & boundaries

Create the conceptual design

DBMS software selection

Create the logical design

Create the physical design

Install the DBMS

Create the database(s)

Test the database

Fine-tune the database

Evaluation the DB & its application programs

Produce the required information flow

Maintenance &

evolution

Introduce changes

Make enhancement

MDBMS III-B.Sc 135 compiled by J. Kishore Kumar Reddy

 What is the organization‟s general operating environment, and what is its

mission within that environment?

 What is the organization‟s structure?

DEFINE PROBLEMS AND CONSTRAINTS

 How does the exciting system function? What input does the system require?

What documents does the system generate? How is the system output used? By

whom? Studying the paper trail can be very informative.

 During the initial problem definition process, the designer is likely to collect

very broad problem descriptions.

DEFINE OBJECTIVES

 A proposed database system must be designed to help solve at least the

major problems identified during the problem discovery process. If the designer

can create a database that sets the stage for more efficient parts management,

both departments gain. The initial objective, therefore, might be to create an

efficient inventory query and management system.

DEFINE SCOPE AND BOUNDARIES

 The designer must recognized the existence of two sets of limits: scope and

boundaries. The system‟s scope defines the existent of the design according to

operational requirements. Will the database design encompass the entire

organization, one or more departments within the organization, or one or more

functions of a single department?

 The proposed system is also subject to limits known as boundaries, which are

external to the system.

2. DATABASE DESIGN

 The second phase focuses on the design of the database model that will

support company operations and objectives. This is arguably the most critical DBLC

phase: making sure that the final product meets user and system requirements. It

the process of database design you must concentrate on the data characteristics

required to build the database model.

CONCEPTUAL DESIGN

 At this level of abstraction, the type of hardware and/or database model to

be used might not yet have been identified. Therefore, the design must be software

MDBMS III-B.Sc 136 compiled by J. Kishore Kumar Reddy

and hardware independent so the system can be set up within any hardware and

software platform chosen later.

 Determine end-user views, outputs, and transaction-processing

requirements.

 Define entitles, attributes, and relationships. Draw ER diagrams.

Normalize tables.

 Identify main processes. Insert, update, and delete rules. Validate

reports, queries, view, integrity sharing and security.

 Define the location of tables, access requirements, and fragmentation

strategy.

PROCEDURE FLOW IN THE DATABASE DESIGN

DBMS SOFTWARE SELECTION

 The selection of DBMS software is critical to the information system‟s smooth

operation. Consequently, the advantages and disadvantages of the proposed DBMS

software should be carefully studied. To avoid false expectations, the end user

must be made aware of the limitations of both the DBMS and the database.

LOGICAL DESIGN

 Logical design translates the conceptual design into the internal model for a

selected database management system (DBMS) such as DB2, SQL Server, Oracle,

and Access. Therefore, the logical design is software-dependent.

 Logical design requires that all objects in the model be mapped to the specific

constructs used by the selected database software. For example, the logical design

 Determine end-user views, outputs,

 And transaction-processing requirements.

Define entities, attributes, and relationships.

 Draw ER diagrams. Normalize tables.

 DBMS

 Identify main processes. Insert, update, and indepen-

 Delete rules. Validate reports, queries, views, dence

 Integrity, sharing, and security.

Define the location of tables, access

 Requirements, and fragmentation strategy.

1. Conceptual Design

Database analysis

and requirements

Entity relationship modeling

and normalization

Data model verification

Distributed database

design

MDBMS III-B.Sc 137 compiled by J. Kishore Kumar Reddy

for a relational DBMS includes the specifications for the tables, indexes, views,

transactions, access authorizations, and so on.

PHYSICAL DESIGN

 Physical design is the process of selecting the data storage and data access

characteristics of the database. The storage characteristics are a function of the

types of devices supported by the hardware, the type of data access methods

supported by the system, and the DBMS. Physical design affects not only the

location of the data in the storage devise(s), but also the performance of the

system.

3. IMPLEMENTATION AND LODING

 In most modern relational DBMSs, such as IBM, DB2, Microsoft SQL Server,

and Oracle, a new database implementation requires the creation of special

storage-related constructs to house the end-user tables. The constructs usually

include the storage group, the table space, and the tables. Note a table space may

contain more than one table.

 During the implementation and loading phase, you also must address

performance, security, backup and recovery integrity, and company standards.

PERFORMANCE

 Database performance is one of the most important factors in certain

database implementations. Performance varies according to the hardware and

software environment used. Important factors in database performance also

include system and database configuration parameters, such as data placement,

access path definition, use of indexes, and buffer size.

SECURITY

 Data stored in the company database must be protected from access by

unauthorized users.

 Physical security allows only authorized personnel physical access to

specific areas.

 Password security allows the assignment of access rights to specific

authorized users.

 Access rights can be established through the use of database software.

 Audit trails are usually provided by the DBMS to check for access

violations.

MDBMS III-B.Sc 138 compiled by J. Kishore Kumar Reddy

 Data encryption can be used to render data useless to unauthorized

users who might have violated some of the database security layers.

 Diskless workstations allow end users to access the database without

being able to download and information from their workstations.

BACKUP AND RECOVERY

 Timely data availability is crucial in the information game. The database can

be subject to data loss through unintended data deletion, power outages, and so

on. Data backup and recovery procedures create a safety value, allowing the

database administrator to ensure the availability of consistent data.

INTEGRITY

 Data integrity is enforced through the proper use of primary and foreign key

rules.

COMPANY STANDARDS

 Database standards may be partially defined by specific company

requirements. The database administrator must implement and enforce such

standards.

4. TESTING AND EVALUATION

 Once the data have been loaded into the database, the DBA tests and fine-

tunes the database for performance, integrity, concurrent access, and security

constraints. The testing and evaluation phase occurs in parallel with applications

programming.

 If the database implementation fails to meet some of the system‟s evaluation

criteria, several options may be considered to enhance the system:

 For performance-related issues, the designer must consider fine-tuning

specific system and DBMS configuration parameters.

 Modify the physical design.

 Modify the logical design.

 Upgrade or change the DBMS software and/or the hardware platform.

5. OPERATION

MDBMS III-B.Sc 139 compiled by J. Kishore Kumar Reddy

 Once the database has passed the evaluation stage, it is considered to be

operational. At that point, the database, its management, its users, and its

application programs constitute a complete information system.

6. MAINTENANCE AND EVOLUTION

 The database administrator must be prepared to perform routine

maintenance activities within the database. Some of the required periodic

maintenance activities include:

 Preventive maintenance (backup).
 Corrective maintenance (recovery).

 Adaptive maintenance (enhancing performance, adding entities and
attributes, and so on).

 Assignment of access permissions and their maintenance for new and

old users.
 Generation of database access statistics to improve the efficiency and

usefulness of system audits and to monitor system performance.
 Periodic security audits based on the system-generated statistics.
 Periodic (monthly, quarterly, or yearly) system-usage summaries for

internal billing or budgeting purposes.
DATABASE DESIGN STRATEGIES

 There are two classical approaches to database design:

1. Top-down design starts by identifying the data sets, then defines the

data elements for each of those sets. This process involves the

identification of different entity types and the definition of each entity‟s

attributes.

2. Bottom-up design first identifies the data elements (items), and then

groups them together in data sets. In other words, it first defines

attributes, and then groups them to form entities.

The two approaches are illustrated in below figure. The selection of a

primary emphasis on top-down or bottom-up procedures often depends on

the scope of the problem or on personal preferences.

Top-down vs. Bottom-up design sequencing

CENTRALIZED VS. DECENTRALIZED DESIGN

Conceptual model

Entry Entry

Attribute Attribute

Attribute

Attribute

T
o

p
 d

o
w

n

B
o

tt
o

m
 u

p

MDBMS III-B.Sc 140 compiled by J. Kishore Kumar Reddy

 The two general approaches (bottom-up and top-down) to database design

can be influenced by factors such as the scope and size of the system. Depending

on such factors, the database design may be based on two very different

design philosophies: centralized and decentralized.

 Centralized design is productive when the data component is composed of

a relatively small number of objects and procedures. The design can be carried out

and represented in a fairly simple database. Centralized design is typical of

relatively simple and / or small databases and can be successfully done by a single

person (database administrator0 or by a small, informal design team.

 Decentralized design might be based when the data component of the

system has a considerable number of entities and complex relations on which very

complex operations are performed. Decentralized design is also likely to be

employed when the problem itself is spread across several operational sites and

each element is a subset of the entire data set. In large and complex projects, the

database design typically cannot be done by only one person. Within the

decentralized design framework, the database design task is divided into several

modules. Once the design criteria have been established, the lead designer assigns

design subsets or modules to design groups within the team.

TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL

INTRODUCTION

 Transaction management is the ability of a database management system to

manage the various transactions that occur within the system. Concurrency control

is the activities of coordinating the actions of processes that operate in parallel and

access shared data, and therefore potentially interfere with each other.

 Transaction management and concurrency control issues are in the design of

hardware, operating system, real time systems, communications systems and

database systems among others.

TRANSACTION PROPERTIES

 To ensure data integrity, the database management system should maintain

the following transaction properties – atomicity, consistency, isolation and

durability. These properties are often referred to as ACID properties – an

acronym derived from the first letter of the properties.

MDBMS III-B.Sc 141 compiled by J. Kishore Kumar Reddy

 Atomicity requires that all operations (SQL requests) of a transaction

be completed; if not, the transaction is aborted. If a transaction T1

has four SQL requests, all four requests must be successfully

completed; otherwise, the entire transaction is aborted. In other

words, a transaction is treated as a single, indivisible, logical unit of

work.

 Consistency indicates the permanence of the database‟s consistent

state. When a transaction is completed, the database reaches a

consistent state.

 Isolation means that the data used during the execution of a

transaction cannot be used by a second transaction until the first one

is completed. In other words, if a transaction T1 is being executed and

is using the data item X, that data item cannot be accessed by any

other transaction (T2. . . .Tn) until T1 ends. This property is

particularly useful in multi-user database environments because

several different users can access and update the database at the

same time.

 Durability ensures that once transaction changes are done

(committed), they cannot be undone or lost, even in the event of a

system failure.

 Serializability ensures that the concurrent execution of several

transactions yields consistent results. More specifically, the concurrent

execution of transactions T1, T2 and T3 yields results that appear to

have been executed in serial order (one after another). This property

is important in multi-user and distributed databases, where multiple

transactions are likely top be executed concurrently.

TRANSACTION MANAGEMENT WITH SQL (OR) TRANSACTION STATES

If there are no failures, the transactions complete successfully. A

transaction that completes its execution is said to be committed. A

committed transaction that has performed updates transforms the database into a

new consistent state.

 A transaction may not always successfully complete its execution.

When a transaction has not successfully completed its execution we say

MDBMS III-B.Sc 142 compiled by J. Kishore Kumar Reddy

that it has aborted. If we are to ensure the atomicity property, an aborted

transaction should not have any effect on the state of database. So any changes

made to the database by an aborted transaction should be reversed or undone.

 Once all the changes caused by an aborted transaction have been

undone we say that the transaction has rolled back. The rolling back of a

transaction is handled by the recovery-management component of the database.

Once a transaction is committed, we cannot undo the changes made by the

transaction by rolling back the transaction. A transaction must be in one of the

following states:

 Active – This is the initial state, the transaction stays in this state

while it is executing.

 Partially committed – A transaction is in this state when it has

executed the final statement.

 Failed – A transaction is in this state once the normal execution of the

transaction cannot proceed.

 Aborted – A transaction is said to be aborted when the transaction

has rolled back and the database is being restored to the consistent

state prior to the start of the transaction.

 Committed – A transaction is in the committed state once it has been

successfully executed and the database is transformed into a new

consistent state.

We say a transaction has committed only after it has entered the committed

state. Similarly we say a transaction has aborted only after it has entered the

aborted state (i.e. after the transaction is rolled back and the database is restored

to the consistent state prior to the start of the transaction). A transaction that is

either committed or aborted is said to be terminated.

 A transaction starts in the active state. A transaction contains a group of

statements that form a logical unit of work. When the transaction has finished

executing the last statement, it enters the partially committed state. At this point

the transaction has completed execution, but it is still possible that it may have to

be aborted. This is because the actual output may still be in the main memory and

a hardware failure can still prevent the successful completion. The database system

MDBMS III-B.Sc 143 compiled by J. Kishore Kumar Reddy

then writes enough information to the disk-either updates the database or writes

enough information (enough to recover the database to the new consistent state in

the event of a failure) into the log files. When the last of this information is written,

the transaction enters the committed state.

Transaction support is provided by two SQL statements:

COMMIT and ROLLBACK. When a transaction sequence is initiate by a user or an

application program, the sequence must continue through all succeeding SQL

statements until one of the following four events occurs:

1. A COMMIT statement is reached, in which case all changes are permanently

recorded within the database. The COMMIT statement automatically ends

the SQL transaction.

2. A ROLLBACK statement is reached, in which case all changes are aborted

and the database is rolled back to its previous consistent state.

3. The end of a program is successfully reached, in which case all changes are

permanently recorded within the database. This action is equivalent to

COMMIT.

 Database

 Database (After applying the updates)

 (Initial state)

 Database

 (Restored to initial state)

Active

Partially

Committed

Failed Aborted

Committed

MDBMS III-B.Sc 144 compiled by J. Kishore Kumar Reddy

The program is abnormally terminates, in which case the changes made in the

database are aborted and the database is rolled back to its previous consistent

state. This action is equivalent to ROLLBACK

THE TRANSACTION LOG

 A DBMS uses a transaction log to keep track of all transactions that

update the database. The information stored in this log is used by the DBMS for

a recovery requirement triggered by a ROLLBACK statement, a program‟s abnormal

termination, or a system, failure such as a network discrepancy or a disk crash.

Some RDBMSs use the transaction log to recover a database forward to a

currently consistent state. After a server failure, for example, Oracle automatically

rolls back uncommitted transactions and rolls forward transactions that were

committed but not yet written to the physical database.

 While the DBMS executes transactions that modify the database, it also

automatically updates the transaction long. The transaction log stores:

 A record for the beginning of the transaction.

 For each transaction component (SQL statement):

 The type of operation being performed (update, delete, insert)

 The name of the objects affected by the transaction (the name

of the table).

 The “before” and “after” values for the fields being updated.

 Pointers to the previous and next transaction log entries for the

same transaction.

 The ending (COMMIT) of the transaction.

CONCURRENCY CONTROL

 The process of managing simultaneous operations against a database so that

data integrity is maintained and the operations do not interfere with each other in a

multi-user environment.

Database administrators must expect and plan for the likelihood that several

users will attempt to access and manipulate data at the same time. With

concurrent processing involving updates, a database without concurrency control

will be compromised due to interference between users. There are two basic

approaches to concurrency control: a pessimistic approach (involving locking) and

an optimistic approach (involving versioning).

MDBMS III-B.Sc 145 compiled by J. Kishore Kumar Reddy

 Most DBMSs run in a multi-user environment, with the expectation that users

will be able to share the data contained in the database. If users are only reading

data, no data integrity problems will be encountered, because no changes will be

made in the database. However, if one or more users are updating data, then

potential problems with maintaining data integrity arise. When more than one

transaction is being processed against a database at the same time, the

transactions are considered to be concurrent.

The actions that must be taken to ensure that data integrity is

maintained are called currency control actions. Remember that the CPU can

process only one instruction at a time. As new transactions are submitted while

other processing is occurring against the database, the transactions are usually

interleaved.

The coordination of the simultaneous execution of transactions in a

multi-user database system is known as concurrency control. The objective

of concurrency control is to ensure the serializability of transactions in a multi-user

database environment. Concurrency control is important because the simultaneous

execution of transactions over a shared database can create several data integrity

and consistency problems.

The three main problems are lost updates, uncommitted data, and

inconsistent retrievals.

THE PROBLEM OF LOST UPDATES

 The most common problem encountered when multiple users attempt to

update a database without adequate concurrency control is that of lost

updates. Figure(a) shows a common situation. Kishore and Venu have a joint

checking account and both want to withdraw some cash at the same time, each

using an ATM terminal in a different location. In the below figure shows the

sequence of events that might occur, in the absence of a concurrency control

mechanism. Kishore‟s transaction reads the account balance (which is $10,000)

and he proceeds to withdraw $2000. Before the transaction writes the new account

balance ($8000), Venu‟s transaction reads the account balance (which is still

$10,000). He then withdraws $3000, leaving a balance of $7000. His transaction

then writes this account balance, which replaces the one written by Kishore‟s

transaction. The effect of Kishore‟s update has been lost due to interference

between the transactions, and the bank is unhappy.

MDBMS III-B.Sc 146 compiled by J. Kishore Kumar Reddy

UNCOMMITTED DEPENDENCY PROBLEM

 The uncommitted dependency problem occurs when one transaction is

allowed to see the intermediate results of another transaction before it is

committed. An example of such a situation is showing below table. Here T1 starts

execution and after the results are written to the database it aborts due to some

reason. Since the transaction has aborted, the database should be restored to the

original consistent state. But before the roll back is performed, transaction T2

reads the account balance and starts executing. So instead of a balance of 70000

(since only transaction T2 was committed), we now end up with a wrong result of

60000. This happened because the transaction T2 was permitted to read

the intermediate result of transaction T1 i.e., before transaction T1 was

terminated (either committed or rolled back).

Uncommitted Dependency Problem

Sequence T1 T2 Account

Balance

01 Begin transaction 50000

02 Read (CA2090) 50000

03 CA2090:=CA2090 – 10000 50000

04 Write (CA2090) Begin transaction 40000

05 Read (CA2090) 40000

06 Roll back CA2090=CA2090+20000 50000

 Time

 Kishore Venu

1. Read account balance

(Balance=$10,000)

 1. Read account balance

 (Balance=$10,000)

2. Withdraw $2000

(Balance = $8000)

 2. Withdraw $3000

 (Balance = $7000)

 3. Write account balance

 (Balance = $8000)

 3. Write account balance

 (Balance = $7000)

MDBMS III-B.Sc 147 compiled by J. Kishore Kumar Reddy

07 Write (CA2090) 60000

08 commit 60000

 This problem is avoided by preventing T1 from reading the account balance

until the transaction T1 is terminated – i.e. either committed or rolled back.

INCORRECT ANALYSIS PROBLEM

 The problems arising when concurrent transactions are updating the

database. But problems could arise even when a transaction is not updating the

database transactions that read the database can also produce wrong results, if

they are allowed to read the database when the database is in an inconsistent state.

This problem is often referred to as dirty read or unrepeatable read. The

problem of dirty read occurs when a transaction reads several values from the

database while other transactions are updating those values.

SERIALIZABILITY

 Some of the problems associated with the concurrent execution of

transactions. The objective of concurrency control is to schedule or arrange to

transactions in such a way as to avoid any interference. One obvious (but very

inefficient) was of avoiding the interference of the transactions is to execute them

one at a time – one transaction is committed before another is allowed to begin.

But in a multi-user environment, where there are hundreds of users and thousands

of transactions the serial execution of the transactions is not a viable option. The

DBMS will have to find ways and device strategies to maximize concurrency in the

system, so that many transactions can execute in parallel without interfering with

one another.

 A non-serial schedule is a schedule where the operations from a group of

concurrent transactions are interleaved. In the case of a non-serial schedule, the

problems that we have seen earlier (multiple update, uncommitted dependency and

incorrect analysis) can arise, if the schedule is not proper. Serial execution

prevents the above-mentioned problems.

MDBMS III-B.Sc 148 compiled by J. Kishore Kumar Reddy

 The objective or serializibility is to find non-serial schedules that

allow transactions to execute concurrently without interfering with one

another and thereby producing a database state that could be produced by

a serial execution. In serializibility, the order of the read and write operations are

important and the serializibility rules are given below:

 If two transactions only read a data item, they do not conflict and the

order is not important.

 If two transactions either read or write completely separate data items,

they do not conflict and the execution order is not important.

 If one transaction writes a data item and another either reads or writes

the same data item, the order of execution is important.

LOCKING MECHANISMS (or) concurrency control with locking Mechanisms

(or) Granularity:

 Transactions that request data from different tables in a database will not

conflict with each other and can be run concurrently without causing data integrity

problems. Serializability is achieved by different means, but locking mechanisms

are the most common type of concurrency control mechanism. With locking, any

data that are retrieved by a user for updating must be locked, or denied to other

users, until the update is complete or aborted.

Locking: Any data that are retrieved by a user for updating must be locked,

or denied to other users, until the update is completed or aborted

Following fig shows the use of record locks to maintain data integrity.

Kishore initiates a withdrawal transaction from an ATM. Since Kishore‟s transaction

will update this record, the application program locks this record before reading it

into main memory. Kishore proceeds to withdraw $2000, and the new balance

($8000) is computed. Venu has initiated a withdrawal transaction shortly after

Kishore, but his transaction cannot access the account record until Kishore‟s

transaction has returned the updated record to the database and unlocked the

record. The locking mechanism thus enforces a sequential updating process that

prevents erroneous updates.

MDBMS III-B.Sc 149 compiled by J. Kishore Kumar Reddy

Locking Level:

 An important consideration in implementing concurrency control is

choosing the locking level. The locking level (also called granularity) is the

extent of the database resource that is included with each lock. Most commercial

products implement locks at one of the following levels:

 1. Database: The entire database is locked and becomes unavailable to

other users. This level has limited application, such as during a backup of the entire

database.

 Time

 Kishore Venu

1. Request account balance

2. Lock account balance

1. Request account balance

3. Read account balance

(Balance = $10,000)

4. Withdraw $2000

(Balance = $8000)

5. Write account balance

(Balance = $8000)

6. Unlock account balance

2. Lock account balance

3. Read account balance

 (Balance = $8000)

4. Withdraw $3000)

 (Balance = 45000)

5. Write account balance

 (Balance = $5000)

6. Unlock account balance

MDBMS III-B.Sc 150 compiled by J. Kishore Kumar Reddy

 2. Table: The entire table containing a requested record is locked. This

level is appropriate mainly for bulk updates that will update the entire table, such as

giving all employees a 5 percent raise.

 3. Block or page: The physical storage block (or page) containing a

requested record is locked. This level is the most commonly implemented locking

level. A page will be a fixed size (4K, 8K, etc.) and may contain records of more

than one type.

 4. Record level: Only the requested (or row) is locked. All other records,

even within a table, are available to other users.

 5. Field level: Only the particular field (or column) in a requested record

is locked. This level may be appropriate when most updates affect only one or two

fields in a record.

Types of Locks

 In reality, the database administrator can generally choose between two

types of locks: shared and exclusive.

1. Shared locks:

Shared locks (also called S locks, or read locks) allow other transactions to

read (but not update) a record or other resource. A transaction should place a

shared lock on a record or data resource when it will only read but not update that

record. Placing a shared lock on a record prevents another user from placing an

exclusive lock, but not a shared lock, on that record.

2. Exclusive locks:

 Exclusive locks (also called X locks, or write locks) prevent another

transaction from reading (and therefore updating) a record until it is unlocked. A

transaction should place an exclusive lock on a record when it is about to update

that record. Placing an exclusive lock on a record prevents another user from

placing any type of lock on that record.

DEADLOCKS

MDBMS III-B.Sc 151 compiled by J. Kishore Kumar Reddy

 A deadlock occurs when two transactions wait for each other to unlock data.

For example a deadlock occurs when two transactions, T1 and T2, exist in the

following mode:

 T1 = access data items X and Y

 T2 = access data items Y and X

 If T1 has not unlocked data item Y, T2 cannot begin; if T2 has not unlocked

data item X, T1 cannot continue. Consequently, T1 and T2 wait indefinitely, each

waiting for the other to unlock the required data item. Such a deadlock is also

known as a deadly embrace.

 In a real-word DBMS, many more transactions can be executed

simultaneously, thereby increasing the probability of generating deadlocks.

The two basic techniques to control deadlocks are:

 Deadlock prevention: User programs must lock all records

they require at the beginning of a transaction (rather than one

at a time)

 Deadlock detection: The DBMS periodically tests the database

for deadlocks. If a deadlock is found, one of the transactions

(the “victim”) is aborted (rolled back and restarted) and the

other transaction continues.

TWO-PHASE LOCKING TO ENSURE SERIALIZABILITY

 Two-phase locking defines how transactions acquire and relinquish locks.

Two-phase locking guarantees serializability, but it does not prevent deadlocks.

The two phases are:

1. A growing phase, in which a transaction acquires all required locks

without unlocking any data. Once all locks have been acquired, the

transaction is in its locked point.

2. A shrinking phase, in which a transaction releases all locks and cannot

obtain any new lock.

The two-phase locking protocol is governed by the following rules:

 Two transactions cannot have conflicting locks.

MDBMS III-B.Sc 152 compiled by J. Kishore Kumar Reddy

 No unlock operation can precede a lock operation in the same

transaction.

 No data are affected until all locks are obtained-that is, until the

transaction is in its locked point.

Two-phase locking protocol

CONCURRENCY CONTROL WITH TIME TAMPING METHODS

 The time stamping approach to scheduling concurrent transactions assigns

a global, unique time stamp to each transaction. The time stamp value produces an

explicit order in which transactions are submitted to the DBMS. Time stamps

must have two properties: uniqueness and monotonicity.

Uniqueness endures that no equal time stamp values can exist, and

monotonicity ensures that time stamp values always increase.

 All database operations (Read and Write) within the same transaction must

have the same time stamp. The DBMS executes conflicting operations in time

stamp order, thereby ensuring serializability of the transactions. If two transactions

conflict, one is stopped, rolled back, rescheduled, and assigned a new time stamp

value.

WAIT / DIE AND WOUND / WAIT SCHEMES

 Time stamping methods are used to manage concurrent transaction

execution. Two schemes used to decide which transaction is rolled back and which

 Time 1 2 3 4 5 6 7 8

Acquire

lock

Acquire

lock

Locked

point

Release

lock

Release

lock

Operations

Locked

phase
Growing phase Shrinking phase

Start End

MDBMS III-B.Sc 153 compiled by J. Kishore Kumar Reddy

continues executing: the wait / die scheme and the wound / wait scheme. As

example illustrates the difference. Assume that you have two conflicting

transactions T1 and T2, each with a unique time stamp. Suppose T1 has a time

stamp of 11548789 and T2 has a time stamp of 19562545. You can deduce from

the time stamps that T1 is the older transaction (the lower time stamp value) and

T2 is the newer transaction. Given that scenario, the four possible outcomes are

shown in below table.

Wait / die and Wound / Wait Concurrency Control Schemes

TRANSACTION

REQUESTING LOCK

TRANSACTION

OWNING LOCK

WAIT / DIE

SCHEME

WOUNDE / WAIT

SCHEME

T1 (11548789)

T2 (19562545)

 T1 waits until T2 is

completed and T2

releases its locks.

 T1 preempts (rolls back)

T2.

 T2 is rescheduled using

the same time stamp.

T2 (19562545)

T1 (11548789)

 T2 dies (rolls back).

 T2 is rescheduled using

the same time stamp.

 T2 waits until T1 is

completed and T1

releases its locks.

 In the wit / die scheme, the older transaction waits and the younger is

rolled back and rescheduled.

 In the wound / wait scheme, the older transaction rolls back the

younger transaction and reschedules it.

CONCURRENCY CONTROL WITH OPTIMISTIC METHODS

 The optimistic approach is based on the assumption that the majority

of the database operations do not conflict. The optimistic approach does not

require locking or time stamping techniques. Instead, a transaction is executed

without restrictions until it is committed. Using an optimistic approach, each

transaction moves through two or three phases. The phases are red, validation,

and write.

 During the read phase, the transaction reads the database, executes

the needed computations, and makes the updates to a private copy of

the database values. All update operations of the transaction are

recorded in a temporary update file, which is not accessed by the

remaining transactions.

MDBMS III-B.Sc 154 compiled by J. Kishore Kumar Reddy

 During the validation phase, the transaction is validated to ensure

that the changes made will not affect the integrity and consistency of

the database. If the validation test is positive, the transaction goes to

the write phase. If the validation test is negative, the transaction is

restarted and the changes are discarded.

 During the write phase, the changes are permanently applied to the

database.

DATABASE RECOVERY MANAGEMENT

 Database recovery restores a database from a given state, usually

inconsistent, to a previously consistent state. Recovery techniques are

based on the atomic transaction property: all portions of the transaction must

be treated as a single, logical unit of work in which all operations are applied and

completed to produce a consistent database. If, for some reason, any transaction

operation cannot be completed, the transaction must be aborted and any changes

to the database must be rolled back (undone). In short, transaction recovery

reverses all of the changes that the transaction made to the database before it was

aborted.

 Backup and recovery functions constitute a very important component of

today‟s DBMSs. Some DBMSs provide functions that allow the database

administrator to schedule automatic database backups to permanent secondary

storage devices such as disks and tapes.

The level of backup varies:

 A full backup of the database, or dump of the database.

 A differential backup of the database, in which only the last

modifications to the database (when compared with a previous backup

copy) are copied.

 A transaction log backup, which backs up only the transaction log

operations that are not reflected in a previous backup copy of the

database.

MDBMS III-B.Sc 155 compiled by J. Kishore Kumar Reddy

The database backup is stored in a secure place, usually in a different

building and is protected against dangers such as fire, theft, flood, and other

potential calamities.

Failures that plague databases and systems are generally induced by

software, hardware, programming exemptions, transactions, or external factors.

SOFTWARE

 Software-included failures may be traceable to the operating system, the

DBMS software, application programs, or viruses.

HARDWARE

 Hardware-induced failures may include memory chip errors, disk crashes, bad

disk sectors, and disk full errors.

PROGRAMMING EXEMPTIONS

 Application programs or end users may roll back transactions when certain

conditions are defined. For example, a recovery procedure may be initiated when a

withdrawal of funds is made when the customer balance is zero or when an end

user has initiated an unintended keyboard error, such as pressing Ctrl+C while

running UNIX application that updates a database at the shell (command prompt)

level.

TRANSACTIONS

 The system detects deadlocks and aborts one of the transactions.,

EXTERNAL FACTORS

 Backups are especially important when a system suffers complete destruction

due to fire, earthquake, flood, or other natural disaster.

TRANSACTION RECOVERY

 Database transaction recovery focuses on the different methods used to

recover a database from an inconsistent to a consistent state by using the data in

the transaction log.

Four important concepts that affect the recovery process:

 The write-ahead-log protocol. This protocol ensures that transaction logs

are always written before any database data are actually updated. This

protocol ensures that, in case of a failure, the database can later be

recovered to a consistent state, using the data in the transaction log.

MDBMS III-B.Sc 156 compiled by J. Kishore Kumar Reddy

 Redundant transaction logs. Most DMBSs keep several copies of the

transaction log to ensure that a physical is failure will not impair the DBMS‟s

ability to recover data.

 Database buffers. A buffer is a temporary storage area in primary memory

used to speed up disk operations. To improve processing time, the DBMS

software reads the data from the physical disk and stores a copy of it on a

“buffer” in primary memory. When a transaction updates data, it actually

updates the copy of the data in the buffer because that process is much

faster than accessing the physical disk every time.

 Database checkpoints. A database checkpoint is an operation in which the

DBMS writes all of its updated buffers to disk. While this is happening, the

DBMS does not execute any other requests. A checkpoint operation is also

registered in the transaction log.

The recovery processes will follow these steps:

1. Identify the last checkpoint in the transaction log. This is the last time

transaction data were physically saved to disk.

2. For a transaction that started and committed before the last checkpoint,

nothing needs to be done because the data are already saved.

3. For a transaction that committed after the last checkpoint, the DBMS

redoes the transaction, using the “after” values of the transaction log.

Changes are applied in ascending order, from oldest to newest.

4. For any transaction that had a ROLLBACK operation after the last

checkpoint or that was left active (with neither a COMMIT nor a

ROLLBACK) before the failure occurred, the DBMS uses the transaction log

records to ROLLBACK or undo the operations, using the “before” values in

the transaction log. Changes are applied in reverse order, from newest to

oldest.

MDBMS III-B.Sc 157 compiled by J. Kishore Kumar Reddy

UNIT-5

DDBMS and Database Administration

THE NEED FOR DATA ANALYSIS

 Data analysis can provide information about short-term tactical evaluations

and strategies such as these: Are our sales promotions working? What market

percentage arte we controlling? Are we attracting new customer? Tactical and

strategic decisions are also shaped by constant pressure from external and internal

forces, including globalization, the cultural and legal environment, and (perhaps

most importantly) technology.

DECISION SUPPORT SYSTEMS

 Decision support is a methodology (or a series of methodologies) designed to

extract information from data and to use such information as a basis for decision

making.

 A decision support system (DSS) is an arrangement of computerized

tools used to assist managerial decision making within a business. A DSS

usually requires extensive data “massaging” to produce information.

 A DSS is used at all levels within an organization and is often tailored to focus

on specific business areas or problems such as finance, insurance, healthcare,

MDBMS III-B.Sc 158 compiled by J. Kishore Kumar Reddy

banking, sales, and manufacturing. The DSS is interactive and provides ad-hoc

query tools to retrieve data and to display data in different formats. The DSS has an

unquestionably important role in modern business operations, keep in mind that the

manager must initiate the decision support process by asking the appropriate

questions.

 A DSS is usually composed for four main components:

A data store component, a data extraction and data filtering component, an

end-user query tool, and an end-user presentation tool.

 The data store component is basically a DSS database. The data store

contains two main types of data: business data and business model data.

The business data are extracted from the operational database and from

external data sources; they represent a snapshot of the company situation.

Business models are generated by special algorithms that model the business

to identify and enhance the understanding of business situations and

problems.

 The data extraction and data filtering component is used to extract and

validate the data taken from the operational database and the external data

sources.

 The end-user query tool is used by the data analyst to create the queries

that access the database.

 The end-user presentation tool is used by the data analyst to organize and

present the data. This tool helps the end user select the most appropriate

presentation format, such as summary report, map, pie or bar graph, or

mixed graphs. The query tool and the presentation tool are the front end to

the DSS and are typically a part of the so-called inference engine. The

inference engine uses the business model data and the business data to draw

conclusions on which the decision maker can act.

Each DSS component shows below figure.

Main components of a decision support system (DSS)

 External data

Operational data

Data extracting DSS

And filtering

Sales Expenses Profit

Business model

data

0

5000

10000

15000

20000

25000

1 2 3

MDBMS III-B.Sc 159 compiled by J. Kishore Kumar Reddy

 DSS data differ from operational data in three main areas:

 Time-span, granularity, and dimensionality.

 Time-span. Operational data cover a short time frame. In contrast, DSS

data tend to cover a longer time frame.

 Granularity (level of aggregation). DSS data must be presented at different

levels of aggregation, from highly summarized to near-atomic. For example,

if a manager must analyze sales by region, the person must be able to access

data showing the sales by region, by city within the region, buy store within

the city within the region, and so on.

 Dimensionality. Operational data focus on representing individual

transactions rather than on the effects of the transactions over time. In

contrast, data analysts tend to include many data dimensions and are

interested in how the data related over those dimension.

Transforming operational data into decision support data

Business data

Operational Data

 A B C D E

3 Year Region Agent Product Value

4 2004 East Carlos Erasers 50

5 2004 East Tere Erasers 12

6 2004 North Carlos Widgets 120

7 2004 North Tere Widgets 100

8 2004 North Carlos Widgets 30

9 2004 South Victor Balls 145

10 2004 South Carlos Balls 34

11 2004 South Carlos Balls 80

12 2004 West Mary Pencils 89

13 2004 West Mary Pencils 56

14 2005 East Carlos Pencils 45

15 2005 East Victor Balls 55

16 2005 North Mary Pencils 60

17 2005 North Victor Erasers 20

18 2005 South Carlos Widgets 30

19 2005 South Mary Widgets 75

20 2005 South Mary Widgets 50

21 2005 South Tere Balls 70

22 2005 South Tere Erasers 90

23 2005 West Carlos Widgets 25

MDBMS III-B.Sc 160 compiled by J. Kishore Kumar Reddy

 A B C D E F

1 Year 2005

2

3
Sum of
Value Region

4 Product East North South West Total

5 Balls 55 70 100 225

6 Erases 20 90 110

7 Pencils 45 60 105

8 Widgets 145 25 180

9 Total 100 80 315 125 620

0

11

12 Year (ALL)

13 Product (ALL)

14

15
Sum of
Value Region

16 Agent East North South West Total

17 Carlos 95 150 60 25 300

18 Mary 60 25 145 330

19 Tere 12 100 160 100 372

20 Victor 55 20 259 334

21 Total 162 330 574 270 1336

Decision support system (DSS) data focus on a broader time-span, tend to have high
levels of granularity, and can be examined in multiple dimensions. For example,
note these possible aggregations:
1) Sales by product, region, agent, etc.
2) Sales for all years or only as few selected years.
3) Sales for all products or only a few selected products.

The differences between operational and DSS data are as follows:

 Operational data represent transactions as they happen, in real time. DSS

data are a snapshot of the operational data at a given point in time.

 Operational and DSS data are different in terms of transaction type and

transaction volume.

 Operational data are commonly stored in many tables, and the stored data

represent the information about a given transaction only. DSS data are

generally stored in a few tables that store data derived from the operational

Region

Time

Product

Agent

Sales

MDBMS III-B.Sc 161 compiled by J. Kishore Kumar Reddy

data. The DSS data do not include the details of each operational

transaction. Instead, DSS data represent transaction summaries; the DSS

stores data that are integrated, aggregated, and summarized for decision

support purpose.

 The degree to which DSS data are summarized is very high when contrasted

with operational data.

 Query activity (frequency and complexity) in the operational database tends

to be low to allow additional processing cycles for the more crucial update

transactions. Queries against DSS data typically are broad in scope, high in

complexity, and less speed-critical.

 DSS data are characterized by large amounts of data.

DSS DATABASE REQUIREMENTS

 There are four main requirements for a DSS database: the database

schema, data extraction and loading, the end-user analytical interface, and

database size.

DATABASE SCHEMA

 The DSS database schema must support complex (non-normalized) data

representations. The DSS database must contain data that are aggregated and

summarized. In addition to meeting those requirements, the queries must be able

to extract multidimensional time slices. If you are using an RDBMS, the conditions

suggest using non-normalized and even duplicated data. To see why this must be

true, take a look at the 10 year sales history for a single store containing a single

department. At this point, the data are fully normalized within the single table, as

shown in below table:

Ten-Year Sales History for a Single Department, Millions of Dollars

YEAR SALES

1996 8,227

1997 9,109

1998 10,1041

1999 11,553

2000 10,018

2001 11,875

2002 12,699

2003 14,875

2004 16,301

2005 19,986

 The DSS database schema must also be optimized for query (read-only)

retrievals.

MDBMS III-B.Sc 162 compiled by J. Kishore Kumar Reddy

DATA EXTRACTION AND FILTERING

 The DSS database is created largely by extracting data from the operational

database and by importing additional data from external sources. Thus, the DBMS

must support advanced data extraction and filtering tools. The data extraction

capabilities should also support different data sources: flat files and hierarchical,

network, and relational databases, as well as multiple vendors. Data filtering

capabilities must include the ability to check for inconsistent data or data validation

rules.

END-USER ANALYTICAL INTERFACE

 The end-user analytical interface is one of the most critical DSS DBMS

components. When properly implemented, an analytical interface permits the user

to navigate through the data to simplify and accelerate the decision making

process.

DATABASE SIZE

 DSS databases tend to be very large; gigabyte and terabyte ranges are not

unusual. The DSS database typically contains redundant and duplicated data to

improve data retrieval and simplify information generation. Therefore, the DBMS

must be capable of supporting very large databases (VLDBs). To support a

VLDB adequately, the DBMS might be required to use advanced hardware, such as

multiple disk arrays, and, even more importantly, to support multiple processor

technologies, such as a symmetric multiprocessor (SMP) or a massively parallel

processor (MPP).

THE DATA WAREHOUSE

Bill Inmon, the “Father of the data warehouse”, defines the term as “an

integrated, subject oriented, time variant, nonvolatile collection of data

that provides support for decision making.

 Integrated. The data warehouse is a centralized, consolidated database

that integrates data derived from the entire organization and from multiple

sources with diverse formats. Data integration implies that all business

entities, data elements, data characteristics, and business metrics are

described in the same way throughout the enterprises. For instance, the

status of an order might be indicated with text labels such as “open”,

“received”, “cancel”, and “closed” in one department and as “1”, “2”, “3” and

“4” in another department. A student‟s status might be defined as

MDBMS III-B.Sc 163 compiled by J. Kishore Kumar Reddy

“freshman”, “sophomore”, “junior”, or “senior” in the accounting department

and as “FR”, “SO”, “JR” or “SR” in the computer information systems

department. To avoid the potential format tangle, the data in the data

warehouse must conform to a common format acceptable throughout the

organization.

 Subject oriented. Data warehouse data are arranged and optimized to

provide answers to questions coming from diverse functional areas within a

company. Data warehouse data are organized and summarized by topic,

such as sales, marketing, finance, distribution, and transportation, for each

topic, the data warehouse contains specific subjects of interest-products,

customers, departments, regions, promotions, and so on. This form of data

organization is quite different from the more functional or process-oriented

organization of typical transaction system. For example, an invoicing system

designer concentrates on designing normalized data structures (relational

tables) to support the business process by storing invoice components in two

tables: INVOICE and INVLINE. In contrast, the data warehouse has a

subject orientation. Data warehouse designers focus specifically on the data

rather than on the processes that modify the data.

 Time variant. In contrast to operational data, which focus on current

transactions, warehouse data represent the flow of data through time. The

data warehouse can even contain projected data generated through statistical

and other models. It is also time variant in the sense that once data are

periodically uploaded to the data warehouse, all time-dependent aggregations

are recomputed. For example, when data for previous weekly sales are

uploaded to the data warehouse, the weekly, monthly, yearly, and other time

dependent aggregates for products, customers, stores, and other variables

are also updated. The data warehouse contains a time ID that I used to

generate summarizes and aggregations buy week, month, quarter, year, and

so on. Once the data enter the data warehouse, the time ID assigned to the

data cannot be changed.

 Nonvolatile. Once data enter the data warehouse, they are never removed.

Because the data in the warehouse represent the company‟s history, the

operational data, representing the near term history, are always added to it.

Because data are never deleted and new data are continually added, the data

MDBMS III-B.Sc 164 compiled by J. Kishore Kumar Reddy

warehouse is always growing. That‟s why the DSS DBMS must be able to

support multi-gigabyte and even multi-terabyte databases and

multiprocessor hardware.

TWELVE RULES THAT DEFINE A DATA WAREHOUSE

 In 1994, William H. Inmon and Chuck Kelley created 12 rules defining a data

warehouse, which summarize many of the points made in this chapter about data

warehouses.

1. The data warehouse and operational environments are separated.

2. The data warehouse data are integrated.

3. The data warehouse contains historical data over a long time horizon.

4. The data warehouse data are snapshot data captured at a given point in

time.

5. The data warehouse data are subject oriented.

6. The data warehouse data are mainly read-only with periodic batch

updates from operational data. No online updates are allowed.

7. The data warehouse development life cycle differs from classical systems

development. The data warehouse development is data-driven; the

classical approach is process-driven.

8. The data warehouse contains data with several levels of detail: current

detail data, old detail data, lightly summarized data, and highly

summarized data.

9. The data warehouse environment is characterized by read only

transactions to very large data sets. The operational environment is

characterized by numerous update transactions to a few data entities at a

time.

10.The data warehouse environment has a system that traces data sources,

transactions, and storage.

11.The data warehouse‟s metadata are a critical component of this

environment. The metadata identify and define all data elements. The

metadata provide the source, transformation, integration, storage, usage,

relationships, and history of each data element.

12.The data warehouse contains a chargeback mechanism for resource usage

that enforces optimal use of the data by end users.

These 12 rules capture the complete data warehouse life cycle.

MDBMS III-B.Sc 165 compiled by J. Kishore Kumar Reddy

ONLINE ANALYTICAL PROCESSING

 The need for more intensive decision support prompted the

introduction of a new generation of tools. Those new tools Called online

analytical processing (OLAP), create an advanced data analysis environment

that supports decision making, business modeling, and operations research. OLAP

systems share four main characteristics; they

 Use multidimensional data analysis techniques.
 Provide advanced database support.
 Provide easy-to-use end-user interface.

 Support client / server architecture.
MULTIDIMENSIONAL DATA ANALYSIS TECHNIQUES

 The most distinct characteristic of modern OLAP tools is their capacity for

multidimensional analysis. In multidimensional analysis, data are processed and

viewed as part of a multidimensional structure. This type of data analysis is

particularly attractive to business decision makers because they tend to view

business data as data that are related to other business data.

Multidimensional data analysis techniques are augmented by the following

functions:

 Advanced data presentation functions: 3-D graphics, pivot tables, cross

tabs, data rotation, and three dimensional cubes.

 Advanced data aggregation, consolidation, and classification

functions that allow the data analyst to create multiple data aggregation

levels. Aggregating data across the time dimension (by week, month,

quarter, and year) allows the data analyst to drill down and roll up across

time dimensions.

 Advanced computational functions: business-oriented variables (market

share, period comparisons, sales margins, product margins, and percentage

changes), financial and accounting ratios (profitability, overhead, cost

allocations, and returns), and statistical and forecasting functions. These

functions are provided automatically, and the end user does not need to

redefine their components each time they are accessed.

Operational vs. Multidimensional View of Sales

MDBMS III-B.Sc 166 compiled by J. Kishore Kumar Reddy

Multidimensional View of Sales

Customer Dimention 15-May-06 16-May-06 Totals

Dartonik $1,400.00 $1,350.00 $2,750.00

Summer Lake $1,800.00 $3,100.00 $4,900.00

Trydon $400.00 $400.00

Totals $3,200.00 $4,850.00 $8,050.00

Sales are located in the intersection Aggregations are provided
Of a customer row and time column for both dimensions

ADVANCED DATABASE SUPPORT

 The deliver efficient decision support. OLAP tools must have advanced data

access features. Such features include:

 Access to many different kinds of DBMSs, flat files, and internal and external

data sources.

 Access to aggregated data warehouse data as well as to the detail data found

in operational databases.

 Advanced data navigation features such as drill-down and roll-up

 Rapid and consistent query response times.

Table name:DW_LINE

 INV_NUM INV_NUM CUS_NAME INV_PRICE LINE_QTY LINE_AMOUNT

+ 2034 1-Jan-00 Optical Mouse 45.00 20 900.00

 + 2034 2-Jan-00
Wireless RF remote
and laser pointer 50.00 10 500.00

 + 2035 1-Jan-00
Everlast Hard Drive,
60 GB 200.00 6 1200.00

 + 2036 1-Jan-00 Optical Mouse 45.00 30 1350.00

 + 2037 1-Jan-00 Optical Mouse 45.00 10 450.00

 + 2037 2-Jan-00
Roadster 56KB
Ext.Modem 120.00 5 600.00

 + 2037 3-Jan-00
Everlast Hard Drive,
60 GB 205.00 10 2050.00

 + 2038 1-Jan-00
No.Tech Speaker
Set 50.00 8 400.00

Database name: Ch13_Text

Table name:DW_INVOICE

 INV_NUM INV_DATE CUS_NAME INV_TOTAL

 + 2034 15-May-06 Dartonic 1400.00

 + 2035 15-May-06 Summer Lake 1200.00

 + 2036 1615/2006 Dartonik 1350.00

 + 2037 1615/2006 Summer lake 3100.00

 + 2038 1615/2006 Trydon 400.00

Time Dimension

MDBMS III-B.Sc 167 compiled by J. Kishore Kumar Reddy

EASY-TO-USE END-USER INTERFACE

 Advanced OLAP features become more useful when access to them is kept

simple. OLAP tool vendors learned this lesson early and have equipped their

sophisticated data extraction and analysis tools with easy-to-use graphical

interfaces. This familiarity makes OLAP easily accepted and readily used.

CLIENT / SERVER ARCHITECTURE

 Client / Server architecture provides a framework within which new systems

can be designed, developed, and implemented.

