
 Programming in C

Page 1 Compiled by Kishore J Reddy

C LANGUAGE

Name : C

Designation : Leading computer language

Father‘s name & Address : Mr. Dennis Ritchie,

 AT&T, Bell Laboratories,

 Murray Hills, New Jersey,

 USA.

Year of birth : 1972

Historical Background

Year Name of the
language

Short form Developed by Features

1960 ALGORITHMIC
LANGUAGE-60

ALGOL-60 International Group Too theoretical and
not much useful in
practice.

1963 COMBINED
PROGRAMMING

CPL The Cambridge
University, USA.
LANGUAGE

Very large and hard to
learn as well as to use

1967 BASIC
COMBINED
PROGRAMMING
LANGUAGE

BCPL Mr. Martin
Richards The
Cambridge
University, USA.

Too specific and less
powerful

1970 B B Mr.Ken Thompson,
AT&T, Bell Labs,
Murray Hills, New
Jersey, USA.

Too specific

1972 C C Mr.Dennis Ritchie,
AT&T, Bell Labs,
Murray Hills, New
Jersey, USA.

Consists of the
combined good
features of both BCPL
and B, and many
additional features
created by Mr. Dennis
Ritchie.

Status : Middle level language

 C has fast programming ability like high level languages, but not as much as

that of high level languages.

 C has program execution ability like that of low level languages, but not as

much as that of low level languages, viz. Assembly language and machine

language.

 Since C stands between both of them, to call it a middle level language.

 Programming in C

Page 2 Compiled by Kishore J Reddy

BASIC ELIMENTS

In C , the basic elements include the set of characters, keywords,

identifiers, data types, constants, variables, declarations, expressions,

statements and symbolic constants.

THE BASIC ELEMENTS OF „C‟

Name of
the
Element

Contents/Characteristics Name of the Element Contents /
Characteristics

1 2 3 4

Character
set

 Alphabets

 Digits

 Special symbols

 Blank spaces

 Upper Case
A,B,C…Z(26), Lower
Case a,b…z(26)

 0,1,2,3,4,5,6,7,8,9

 # , * ,-, +, \, /, ;, :, ?, !
etc.

 Non-printing
characters.

Words, expressions
and statements can
be formed by the
combination of
alphabets, digits and
symbols

Keywords In C, 32 Keywords are
available.
They are also called
‗Reserved Words‘
because each word is
reserved for a
predefined purpose.

Auto, double, if, static,
Break else, int, struct,
Case, enum long, switch,
Char, extern typedef,
union, Const, float register,
void, Continue return,
unsigned, while, Default
for, short, do, Goto, signed
sizeof, volatile

 Each key word
has a standard
and pre-defined
meaning and a
pre-defined
purpose as well.

 The meaning or
purpose of
keywords cannot
be changed by a
user.

CONSTANTS

C constants can be divided into two major categories as:

 1. Primary constants and

 2. Secondary constants

 Programming in C

Page 3 Compiled by Kishore J Reddy

Primary constants can be divided into three types:

a) Integer constants

b) Real constants

c) Character constants

Secondary constants are divided into several types namely arrays, strings, structures
etc.

Classification of Constants

CONSTANTS

PRIMARY SECONDARY
CONSTANTS CONSTANTS

Integer Real Character Arrays Strings Structures
Constants Constant Constant

PRIMARY CONSTANTS

Primary constants are mainly of three types. They are:

a) Integer Constants

 An integer constant is formed with an integer number.

 Integer constants do not have decimal point.

 The number may be positive or negative.

 It includes zero also.

 If no sign precedes the constant, it is taken as a positive constant.

E.g:- 32768, -25, +25, 1000 , +32767 are valid integer constants.

 b) Real Constants

 This is also called Floating point constants.

 Real Constants must have decimal point.

 Integer constants can‘t express a value in fraction or decimal form. Values

of temperature, height, weight, prices etc., are normally in decimal form.

In such cases, we should use real numbers.

 These numbers have a decimal point and they are either positive or

negative.

 Programming in C

Page 4 Compiled by Kishore J Reddy

 If no sign precedes the number it is always positive.

 No blank spaces, commas or special symbols (except (.) decimal point)

are not allowed in real constants.

E.g:- 0.25, -1.25, -0.251, +25.1

 In no value is present either on the left-hand side or the right-hand side of

the real number, the normal practice is to write zero/s.

E.g:- 0.25, 5.0, 00.2, 0.20, -0.2, +7.0 (all these are valid real numbers)

 C) Character Constants

 A character constant is a single character

 It is either a single alphabet (lower or upper case), a single digit, a special

symbol or a blank space enclosed within single quotes (‗) both pointing

towards the left.

 The length of the character constant must be one

E.g: ‗X‘ ‗a‘ ‗5‘ ‗#‘ ‗ ‗ (The last one is the blank space charater)

 d) String constants

 A string constant is sequence of characters enclosed within double

quotes.

 The characters include alphabets (lower case or upper case), digits,

special characters and blank spaces.

 This can also be defined as an array of (sequence of) character constants,

whose last characters is \0 (null) character, which is automatically placed

at the end of the string by the C compiler.

E.g:- ―VERY GOOD‖, ― 2000 YEAR‖, ―$50K‖, ―A‖, ― ‖ (Null String)

E)Blank slash Character Constants :

 These are collectively called ‗ESCAPE SEQUENCES‘ because they are

mainly used to create an escape from the present position.

 The common features of all the escape sequences are they are formed

with 2 characters. The first one is always the back slash (\) character and

the second one is a lower case letter.

 E.g:- \n, \b, \t, \r, etc.

 Programming in C

Page 5 Compiled by Kishore J Reddy

The following table shows a complete list of escape sequences for your ready

reference.

ESCAPE SEQENCE NAME PURPOSE

\n New line Moves the cursor position
to the first position of the
next line

\b Back space Moves the cursor position
to the previous position on
the current line.

\t Horizontal tab Moves the cursor position
to the next horizontal tab
zone.

\r Carriage return Moves the cursor position
to the, first position of the
current line.

\a Alert Produces an audible alert

\f Form feed Moves the cursor position
to the first position of the
next page.

\v Vertical tab Moves the cursor position
to the next vertical tab
position.

Explanation

 \n (new line) this creates new line. When control encounters \n, it changes it

position from the current position to the beginning of the next line.

 \b (back space) this moves the cursor one position to back of its current position.

 \t (tab) this moves the cursor to the next stop of tab. The screen of the monitor is

generally divided vertically in to equal parts and each vertical part consists of 8

columns (means 8 character space) A tropical monitor screen at 80 characters

width (width of 10 tab zones). When ever the cursor encounters at \t, it shifts to

the beginning of next tab zone. The screen is generally divided into 10 tab zones

as shown bellow.

 \r this takes cursor a \t in the 4th zone as shown above it‘s position is immediately

shifted to the 5th zone.

 \a (Alt) its alts the cursor by making a sound. A speaker inside the computer is

used to make such sounds.

 \f (form feed) it‘s used to move to the computer stationary attached to the printer

to the top of the next page.

 \v (vertical tab) it creates a vertical tab that means the cursor moves down

horizontally to next tab zone.

 Programming in C

Page 6 Compiled by Kishore J Reddy

VARIABLES

Def:

 ―A quantity which may be varied during the execution of a program is

called a variable‖.

 For every variable, we have to give a name so as to identify it. Hence,, it is

called an identifier.

Rules for formatting variable names

 A variable name is a combination of alphabets and digits.

 The maximum number of characters in a variable name is restricted to

eight (8).

 The first character of a variable name should always be an alphabet, and

not digit.

 Some version allow more than 8 characters also.

Valid names : y2k, class5, h21350, yr2000, compd_int, day, age,

Invalid names : 5a, 9thclass, 2000yr, 12345.

Note: Upper and lower case case letters are valid in C. though both cases are

allowed , usually C variables are written in lower case.

Syntax for variable declaration:

 Data type Variable List;

Here data type must be a valid data type and variable list may consists of one or

more identifier names separated by commas.

Ex: int I,j,k;

 float avg;

 char name;

 Programming in C

Page 7 Compiled by Kishore J Reddy

Variable initialization

In c, a variable can be assigned with a value during its definition or during the

execution of a program.

The value can be assigned to a variable with the use of assignment operator (=).

Syntax:

 Data type variable name=constant value;

Ex: int a=10;

 float pi=3.14;

 char name=‖anitha‖;

Data Types

Data types allow a programmer to create variables for manipulating data in

programmes.

C , supports a wide variety of data types and the programmer can select the

appropriate o he needs of the application

C supports the following data types

1. Primary data types or Fundamental data types

2. Derived data types

3. User defined data types

Data types

INTEGER TYPE

 Integer numbers include all whole numbers (including their positive values

and negative values)as well as 0. They are: ...-5, -4, -3, -2, -1, 0, 1, 2, 3, 4,

5,..

 The short form of the integer is int, which is keyword.

 The integer data type is basically divided into two types. They are:

 1.signed int

 2.unsigned int

Primary data

types

1. Integer

2. float

3. double

4. char

User defined data

types

1. structures

2. unions

3. Enumerated

Derived data

types

1. Arrays

2. functions

3. pointers

 Programming in C

Page 8 Compiled by Kishore J Reddy

1.Signed int:

 It covers both positive integers as well as negative integers. That

means, while strong these values in the computer‘s memory, not only

the value of the number but also its sign (plus or minus) should be

stored.

 Positive sign is represented by 0 and the negative sign represented by

1. the sign (+or -)occupies a length of one bit in the memory.

 The short form of signed integer is signed int or int.

Unsigned integer

 Some variables take only positive values and they never assume negative

values at all.

E.g: Number of students, Number of items etc.

In such cases, the negative sign need not to be used at all. In other words, the

sign (+or -) associated with these integers need not to be stored, because, if no sign

is associated with a number, we assume that it is a positive number.

 The unsigned integer type is abbreviated to unsigned int.

 It occupies two bytes (16bits) of memory space in a computer.

Short int

 This type represents fairly small values. They can either be signed or

unsigned.

 Signed short integer type should be written as short int or signed short

int.

 Unsigned short integer type should be written as unsigned short int.

 This type occupies 1 byte(8bit)of memory space. (Normally, it takes 2

bytes

 A signed short int can store values ranging from -128 to +127.

 An unsigned short int can store values ranging from 0 to 255.

Long int

 These are divided mainly to represent fairly large values. They are also

divided into 2 types namely, signed and unsigned.

 Signed long int is abbreviated to long int.

 Both these types occupy 4 bytes (32bits) each in the computer‘s memory.

 Programming in C

Page 9 Compiled by Kishore J Reddy

CLASSIFATION OF INTEGER DATA TYPES & OTHER FEATURES

SIGNED INTEGER TYPE

SIGNED SHORT FORM MEMORY
SPACE

RANGE OF
VALUES

CONVERSION
CODE

Int Int/signed int 2 bytes16 bits) From -32768
To +32767

%d

Short Short
signed short/

 Signed short int

 1 byte
(8bits)

From -128 To

+127

%hd

Long Long/
signed long/

Signed long int

4 bytes
(32 bits)

From -2,147,483,
648
To +2,147,483, 647

%ld

Unsigned integer type

Unsigned Short form Memory space Range of
values

Conversion
code

Int Unsigned int/
unsigned

2 bytes
(16 bits)

0-65,535 %u

Short Unsigned short
int/ unsigned

short

1 byte
(8bits)

0 – 255 %hu

Long Unsigned long/
unsigned long

int

4 bytis
(32 bits)

0 to 4,294,
967, 295

%lu

FLOATING POINT TYPE

 All numbers which are expressed in decimal form, including their positive

and negative values are called floating point numbers or real numbers.

 In C also, it has the same meaning.

 The short form of floating type ids the keyword float.

 The numbers occupy a space of 4 bytes (32bits) in memory for all 16 bit

and 32 bit computers.

 It can store values ranging from 3.4 e-38 to 3.4e+38.

 In order store greater values of floating point numbers, 2 or more

additional float types are created.

 They are: double type and long double type.

 Programming in C

Page 10 Compiled by Kishore J Reddy

Double type

 It the ordinary float type is not sufficient for the program requirements, C

offers a bigger one, which is the double data type. It is also of float type

but bigger in size.

 The double data type occupies a space of 8 bytes (64 bits) in the computer

memory.

 The double data type covers values ranging from 1.7e-308 to 1.7e+308.

 The double data type is represented in the short form by the keyword

double.

 The float type which is bigger than the double type is the long double.

Long double type

 The other float type which is bigger than the double type is the long

doubles.

 The long double type occupies 10 bytes (80 bits) in memory.

 The long double can store values ranging from 3.4e-4932 to 1.1e + 4932.

 It is represented in the short form as long double.

 But the double and long double type are rarely used in C programming.

CLASSIFICATION OF Floating point TYPE

Types Short form Memory space Range of
values

I/o conversion
code

Floating point Float 4 bytes
(32 bits)

3,4e-38 to 3.4e
+ 38

%f

Double Double 8 bytes 1.7e-308 to
1.7+308

%lf

Long double Long double 10 bytes
(80 bits)

3.4e-4932 to
1.1e+4932

%Lf

 Programming in C

Page 11 Compiled by Kishore J Reddy

CHARACTER DATA TYPE

 A single character is defined as a character type data. This is represented

in the short form by the keyword char.

 It occupies a space of 1 byte (8bits)in the computer‘s memory.

 The character data type can also be divided into signed and unsigned.

The same definition of signed and unsigned (default with in signed and

unsigned integers) are also applicable to char also.

 Signed char and char are one and the same. By default, the qualifier

signed is assumed for char. But in the case of unsigned by these two

types in the unsigned must be used.

 The value represented by these two types in the case of signed char

varies from -128 to (+)127 and in the case of unsigned char varies from

 0 to (+) 255.

Classification of C operators:

A large number of operators are available in C to perform different operations, as

they are many in number, let us classify them into different categories depending

upon the nature of their operations.

Then we shall discuss their features in a tabular form.

The categories of C operators are:

1. Arithmetic operators

2. unary operators

3. relational operators

4. logical operators

5. assignment operators

6. conditional operators

7. bitwise operators

8. special operators

 Programming in C

Page 12 Compiled by Kishore J Reddy

Classification of C operators

1. Arithmetic operators

Operations to
perform

Symbol Name Purpose

1 2 3 4

Undertake all basic
arithmetic
operations on
numerical values

+
-
*
/
%

Plus
Minus
Asterisk
Slash
Modulus operator

Addition
Subtraction
Multiplication
Division
Derives the
remainder in an
integer division

2.logical
operators

When one or more
than one condition
as to be tested, to
make a decision,
the logical
operators are
useful.

&&
||
!

Logical AND
Logical OR
NOT

Connects 2 or more
conditions to arrive
at a decision.

3. Relational
operators

Two quantities can
be compared by
using relational
operators.
Eg.
Heights of 2
persons, weight of
2 articles, prices of
2 items etc.

<
<=
>
>=
==
!=

Lesser than
Less than or equal to

Greater than
Greater than orequal to

Equal to
Not equal to

All these operators
are useful to
compare to
quantities of similar
nature only.

4.unary operators

Commonly for any
operation (either
mathematical or
logical) two or more
operands are
required.
The unary
operators are an
exception to this
rule.

++

- -

Incremental
operator

Decrement
operator

++ adds 1(one) to
the operand to
which it is prefixed
or suffixed.
E.g: ++a or a++
Similarly(--a) or (a--)
is equal to (a-1)
.

 Programming in C

Page 13 Compiled by Kishore J Reddy

5.Assignement
operators

Operations to
perform

Symbol Name Purpose

The assignment
operator is used to
assign values.
It can assign
integer, floating
point or character
values to a
variable.
E.g
Age=25
Value=3.14159
Sex=‘M‘
Area= long *bread
are valued
expressions.

= Assignment
operator

This operator
assigns the value
given on the Right
hand side of the ‗=‘
operator to the
variable on the left
hand side.
FORMAT:
VARIABLE=VALUE;
The value may be a
constant, variable or
even an expression.

6.conditional
operators

Consists of 2
symbols , a
question mark(?)
and a colon(:).
They are called
TERNARY
operators as they
deal with 3
arguments.

?

:
used as x ?z: z
format

Conditional
operators or
TERNARY
operators

This provides an
alternative and
simple way for
writing ‗if else‘
statements.
They cannot provide
alternative
statements for all if-
else statements.
The format
Exp 1?exp 2: exp 3;
Means if
expressional is true,
it goes to
expression 2 and if
expressional is
false, it goes to
expression 3.

7.Bitwise
operators

Operations to
perform

Symbol Name Purpose

These are used to
access and
manipulate
individual bits
within a piece of
data.

&
|
^
<<
>>
~

Bit wise AND
bitwise OR
EX-OR
Shift left
Shift right
One‘s complement

These operators are
used for testing bits.
They are used for
shifting bits from left
to right and vice
versa.

 Programming in C

Page 14 Compiled by Kishore J Reddy

Examples of Operators :

1. Arithmetic Operations

If a=3, b=4;

Arithmetic
Expression

Value

a+b 7

a-b -1

a*b 12

a/b 1

a%b 1

2. Relational Operators:

If a=10 b=4;

Relational
expression

Return

a!=b (10!=4) True

a<b (10<4) False

a>b (10>4) True

a==b (10==4) False

a<=b (10<=4) False

a>=b (10>=4) True

3. Logical Operators:

Truth tables of Logical AND (&&) ,Logical OR (||), Logical NOT (!)

Exp 1 Exp 2 Exp 1 && Exp 2 Exp 1 || Exp 2 Exp 1 !

T T T T F

T F F T F

F T F T T

F F F F T

 Programming in C

Page 15 Compiled by Kishore J Reddy

Ex: 1
If a=10, b=4, c=3;

(a>b) && (a>c)

(10>4) && (10>3)

T && T = T

Ex :2

If a=10, b=4, c=3;

(a>b) || (a>c)

(10>4) || (10>3)

T || T = T

4. Increment and decrement operators

 Pre-increment : first to increment the value and then assigns the value

General form
 ++ variable;

Ex:
If x is any variable ++x

If A=5 and x = 8 Before assigning After assigning

X=++a X=8 a=5 X=6 a=6

 Post-increment : first to assigns the value and then increments the value

General form
 Variable ++;

Ex:
If x is any variable x++

If A=5 and x = 8 Before assigning After assigning

X=a++ X=8 a=5 X=5 a=6

Decrement operators:

 Pre- decrement: first decrement the value and then assigns the value

General Form : --variable;

 Programming in C

Page 16 Compiled by Kishore J Reddy

Ex : if x is any variable --x;

If A=5 and x=8 Before assigning After assigning

X= --a X=8 a=5 X=4 a=4

 Post- decrement: first assigns the value and decrease the value by one

General Form : variable --;

Ex : if x is any variable x--;

If A=5 and x=8 Before assigning After assigning

X= a-- X=8 a=5 X=5 a=4

5. Conditional operators :

If a=5 and b=9 and big is any variable

Big= (a>b ? a:b)

Big=(5>9 ? 5:9)

Now the big value is b i.e., 9.

6. Bit-wise operators: Truth tables

Exp 1 Exp 2
Bit wise &

(and)
Bit wise |

(or)
Bit wise ^

(XOR)

T(1) T(1) T(1) T(1) F(0)

T(1) F(0) F(0) T(1) T(1)

F(0) T(1) F(0) T(1) T(1)

F(0) F(0) F(0) F(0) F(0)

 Programming in C

Page 17 Compiled by Kishore J Reddy

Note : Substitute T = 1 and F = 0

Bit-wise & (AND operator):

A=000101

B=100100

 Then a & b is 000101

 100100

 000100

Bit-wise | (OR operator):

A=000101

B=100100

 Then a | b is 000101

 100100

 100101

 Bit-wise ^ (XOR operator):

A=000101

B=100100

 Then a ^ b is 000101

 100100

 100001

 Programming in C

Page 18 Compiled by Kishore J Reddy

Shift operators :

Bit wise Left Shift : (<<)

Consider an integer variable x whose value is 8. the bit pattern for the storage

of this value in a single byte will be as fallow

X – 00001000

X <<0 = 00001000

X<< 1 = 00010000 (shift left side add 0 in right side)

X<< 2 = 00100000 (shift left side add 0 in right side)

X<<3 = 01000000 (shift left side add 0 in right side)

Bit wise Right Shift : (>>)

Consider an integer variable x whose value is 8. the bit pattern for the storage

of this value in a single byte will be as fallow

X – 00001000

x>>0 = 00001000

x>>1 = 00000100 (Shift right side add 0 in left side)

x>>2 = 00000010 (Shift right side add 0 in left side)

x>>3 = 00000001 (Shift right side add 0 in left side)

x>>4 = 00000000 (Shift right side add 0 in left side)

Note: Shifting bit may be either 0 or 1 but adding bit must be 0 (zero)

Bit wise complement (~) :

It converts 1 to 0 and 0 to 1

Ex :-

A = 000101

~A = 111010

B= 100100

~B= 011011

 Programming in C

Page 19 Compiled by Kishore J Reddy

8.special operators

C supports some other operators also. They are:

 Comma(,) operator :

The comma operator is used to separate two more expressions written in a

statement one after another.

In printf statements

Ordinary case: printf (―%d‖, age);

The comma operator(,) is used in the above manner.

FORMATTED CONSOLE I/O FUNCTIONS

 Console I/O functions are those functions which are used receiving the input

data from the keyboard and writing the output data to the VDU.

 These two functions are used to read (input) and write (output) data

respectively, in the format requirement by a programmer. Hence they are

known as formatted functions.

 The scanf function: For entering the input data

 The input data can be entered into the computer from the keyboard by using

the standard library function scanf().

 The scanf function can be used for entering numerical values, characters,

strings or any combination of them into the computer.

The general format of the scanf function is:

Scanf(“control string”, list of the addresses of the variables);

‗&‘ sign is called ampersand. It is the address of operator. That means if it is

prefixed to a variable, the combination indicates the address of the variable in the

memory.

 Programming in C

Page 20 Compiled by Kishore J Reddy

Rules of Syntax

1. A scanf statement starts with the word scanf.

2. A pair of parentheses follows the word scanf.

3. A semicolon follows the closing parentheses.

4. Within the parentheses there are two parts. Namely

a. Control string, and

b. List of addresses of variables

5. The control string should be enclosed with in double quotation marks.

6. The two parts should be separated by a comma.

7. The control string is a set of data conversion codes and such data

conversion codes are separated from one another by a blank space for

improving the legibility.

8. The data conversion codes in the control string and the list of addresses of

variable should match each other in number, type and order.

Eg:

 Int a,b;

 float radius;

 char name;

scanf (―%d%d%f%c‖,&a,&b,&radius,&name);

The control string

 The control string consists of a set of characters which are known as data

conversion codes.

 Each set of characters consists of a percentage sign(%) followed by a

conversion character letter in lower case. Together, they are known as data

conversion codes.

Data conversion codes: They indicate the data type of the corresponding data

items.

The commonly used scanf() conversion codes are listed in the following table.

 Programming in C

Page 21 Compiled by Kishore J Reddy

List of scanf conversion codes

Data type Conversion codes Purpose

Integer %hd

%hu

%d

%u

%ld

%lu

%i

signed integer data

unsigned short integer data

signed integer data

unsigned integer data

long signed integer data

long unsigned integer data

decimal, hexadecimal or
octal integer

Real %f
%lf
%Lf

 floating
 double

 long double

Char %c
%c

signed character
 unsigned character data

String

%s Reads a string character
should be suffixed, so as
to accommodate a Null
(/o)character which is

automatically added at the
end.

Others %o
%x
%g

 octal integer
 hexa-decimal integer

 floating point

Prefix Meaning

h For short data types

l For long data types

L For long data types(Long Double)

 Programming in C

Page 22 Compiled by Kishore J Reddy

The printf function: for writing the output data

 The printf function is also a standard library function like the scanf function

and it comes under the header file stdio.h.

 This function is meant for writing the output data in the required format

specified in the programs.

 Syntax of printf statement is

Printf(“control string with text” , list of variables);

Eg: printf(― the sum is%d‖, sum);

Rules of syntax

1. The printf statement starts with the word printf and is followed by a pair of

parenthesis containing the arguments.

2. A semicolon is placed immediately after the closing parenthesis.

3. within the parenthesis, there are 2 parts, namely

a. control string, and

b. list of variables.

 4. The control string should be enclosed within a pair of double quotation marks.

 5. The control string and the list of variables should be separated by a comma.

6. In the list of variables, if there are more than one variable, then the difference

variable are separated from each other by a comma.

7. Within the control string, the different data conversion codes are separated from

each other by blank spaces, tabs or new line sequences, but not commas.

LIBRARY FUNCTIONS

What are C library functions?

C contains scores of functions in its library. Each of these functions perform either a

comely used operation or a calculation.

Classification

 Library functions are classified into different groups depending on the nature

of the functions they carry out. Each group contains functionally related

functions. Which are stored in separate header files.

 Each header file is given a distinct name for the sake of identification.

 Programming in C

Page 23 Compiled by Kishore J Reddy

E.g. Standard input/output functions header file (stdio.h), standard library function

header file, character type function etc.

The following are the names of various header files and their corresponding codes.

Type of functions Code

Mathematical functions #include <math.h>

Standard input/output functions #include <stdio.h>

Utility functions #include<stdlib.h>

String handling functions #include <string.h>

Character type function #include<ctype.h>

Time functions #include<time.h>

How to write a library function?

The procedure for using any library function in a program is as follows:

 The corresponding header file should be #included in the program on the top

of the program.

 Where ever it is required, the name of the function, followed by a list of

arguments that represent the information being passed on to the function are

to be written.

 The argument/s should be written within a pair of parentheses. If there is more

than one argument then they should be separated by a comma/s.

 The arguments may be constants, the presence of a pair of parentheses is a

must.

STRUCTURE OF C PROGRAMMING:

 Comment /*This is my first C program */

 Preprocessor Directive #include <stdio.h>

 (Or) Header File

 Function Declarator Void main()

 Function Begin {

 Body of the function Printf(‖My name is Raju‖);

 Function End }

 Programming in C

Page 24 Compiled by Kishore J Reddy

The various components of the program are discussed below:

1) Comment Line: The statement which starts with the symbol /* */ is treated as

comment. Hence the compiler ignores the complete line starting from /* character

pair. A comment may start anywhere in a line and whatever follows the symbol is

ignored. A comment line is a non-executable statement.

2) Preprocessor Directive: #include<stdio.h> is the preprocessor directive.

3) Function Declarator: Main() is called function declarator. Every C program

must have one function with name main ―from where the execution of the

program begins.‖ The function name is followed by a pair of parentheses which

may or may not contain arguments. Every function is supported to return a value.

Suppose a function does not written a value such functions must be preceded by the

reserved word or keyword void.

4) Function Begin: The function body in C program, is enclosed between two

flower brackets. The opening flower bracket ({) marks the beginning of a function.

All the statements in a function, which are listed after this brace can either, be

executable or non-executable statements.

5) Function Body: The function body consists of statements like input, output,

computational, conditional and looping statements.

6) Function End: The end of a function body in C program is marked by closing

bracket (}). The last line actually marks the end of program and control is

transferred to the operating system or termination of the program.

 Programming in C

Page 25 Compiled by Kishore J Reddy

DECISION MARKES IN C (or) Branching

For the purpose of making decisions, there are various powerful of tool with

district capabilities available in ‗C‘. they are the control flow statements. These

statements work efficiently in different complex situations.

With control flow statements they alter the sequential order of execution.

The control flow statements are mainly of three types. They are:

 -if statement

 -Conditional cooperators

 -switch statements

The control flow mechanism specifies the order in which expressions are evaluated

and statements are executed in a program.

1.The‟ if‟ statement

 ‗if‘ is one of the keywords in C.

 it is a powerful decision-making tool in C.

 It controls the order of execution of various statements in a C program.

 We used various forms of ‗if‘ statement.

 Simple ‗if‘ statement

 If-else statement

 Nested if—else statement

 Else if ladder.

SIMPLE IF STATEMENT

GENERAL FORMAT EXAMPLE

IF (Test condition is TRUE)
{
executable statement I;
executable statement 2;
}

If (The day is holiday)
{
get up late in the morning;
play cricket the whole day;
}

Rules of syntax of If:

1.The test condition always follow the ‗if‘ and it is always enclosed by a pair of

parentheses.

2. No semicolon is placed after the closing parentheses.

 Programming in C

Page 26 Compiled by Kishore J Reddy

3. If the statement block contains of more than one statement, the statement block

should be written a pair of braces ‗{}‘. Otherwise, only the first statement in the

statement block will be executed.

4. If the test condition is ―TRUE‘, the executable statement or the group of

statements are executed sequentially.

5. If the test condition if ‗FALSE‘ the CONTROL simply skips the execution of those

statements and executes the subsequent statement, if any.

/*DEMO:EVALUTION OF THE STATEMENT BLOCK IN THE if STATEMENT*/
#include<stdio.h>
main()
{
int n;
clrscr();
printf(―ENTER AN INTEGER NEUMBER\nn=‖); /*ENTER -5 AS INPUT*?
Scanf(―%d‖,&n);
If(n>0)
Printf(―THE SQUARE OF %d=%d\n‖,n,n*n);
Printf(―THE CUBE OF %d=%d\n‖,n,n*n*n);
}

2.The if …else statement

 This an a simple extension of the if statement.

 That is, in a simple if statement, we define the course of action if the test

condition is ―TRUE‖.

 In case the test condition is ―FALSE‖, we have not defined any course of

action. In such a case the control simply skips the statement block and goes

ahead to executive the subsequent statements, if any.

 The if..else statement defines the course of action in both the cases, that

means, when the test condition is TRUE as well as FALSE.

 when the test condition is TRUE ----- if block statements executed

 when the test condition is FALSE ----- else block statements executed

 Programming in C

Page 27 Compiled by Kishore J Reddy

The general format of an if..else statement is as follows:

General format Example

If(Test condition is TRUE)
{
executable statement 1;
executable statement 2;
……………………….
……………………….
Executable statement irr;
}
else
{
executable statement 1;
executable statement 2;
……………………….
……………………………
executable statement m;
}

If(Working day for college)
{
get up at 6 a,m.;
get ready by 8 a.m.;
catvh the bus by 8:30 a.m;
be present in the classroom by 9 a.m.;

}
else
{
get up at 9 a.m;
play cricket the whole day;
go to a film in the evening;
have dinner outside;
}

RULES OF SYNTAX

 Executable statements immediately following the if is called the if block.

 Similarly, the set of all executable statements else is called the else block.

 Else is written exactly below if . this is not terminated by a semicolon(;).

 If else block contains only one statement, the placing of braces of is the

optional.

 It contains more than one statement, the placing of bases is a must.

 All the executable statements in the if block as well as the else block should

be terminated by a semicolon.

Eg:

/*demo if ..esle statement with the relational operators */

#include <stdio.h>

main()

{

int a,b;

clrscr();

printf(―enter a value for a \na=‖);

scanf(―%d‖, &a);

printf(―Enter a value for b\nb=‖);

 Programming in C

Page 28 Compiled by Kishore J Reddy

scanf(―%d‖, &b);

If (a==b)

Printf(―a is equal to b‖);

Else

Printf(―a is not equal to b\n‖);

If (a!=b)

Printf(―a is not equal to b\n‖);

Else

Printf(―a is equal to b\n‖);

If (a <b)

Printf(―a is less than b\n‖);

Else

Printf(―a is more than or equal to b\n‖);

If (a>b)

Prinf(―a is more than b\n‖);

Else

Printf(―a is lesser than or equal to b\n‖);

}

Example2:

In a company the salary structure is as fallows.

 DA is 50% of the basic pay.

 HRA is 10% of the basic pay.

 Other perks Rs.500 lumpsum.

 Income tax deduction of 5% of the gross salary, if the grass salary is more

than Rs .5000.

Write a program to evaluate the next salary of the employees using if else

Note basic pay is inputted through the keyboard by using the scanf () function.

 Programming in C

Page 29 Compiled by Kishore J Reddy

/* PGM:PREPARATION OF THE SALARY STATEMENT*/

#include<stdio.h>

main()

{

float basic, da, hra, gross_sal, net_sal;

float inc_tax, perks;

clrscr();

perks=500.00;

printf(― Enter the basic salary \n basic=‖);

scanf(―%f‖, & basic);

da=0.5%*basic;

hara=0.1*basic;

grass_sal=basic+da+hra+perks;

if (gross_sal>=5000.00)

inc_tax=0.05*gras_sal;

else

inc_tax=0;

net_sal=gross_sal-inc_tax;

printf(―\t salary statement \n‖);

printf(―----------------------\n‖);

printf(―basic pay :rs.%8.2f\n da :rs.%8.2f\n‖, basic,da);

printf(―hra :rs.%8.2f\n perks :rs.8.2f\n‖,hra,perks);

printf(―income tax :rs.%8.2f\n‖ , inc_tax);

printf(―gross salary :rs.8.2f\n‖, gross_salary);

printf(―net salary :rs.8.2f\n‖, net_salary);

printf(―--\n‖);

}

 Programming in C

Page 30 Compiled by Kishore J Reddy

NESTED if.else

 When we have to take a series of decisions we can use the nested if.lese

statement.

 In a nested if.else statement one if.else statement is written in another

if.else statement.

 The inner if.else statement can be written either in the if block or the

else block of the outer if.else statement. It may some times be written

in both the blocks too.

Example1:

1. Male candidates who have attained the aged of 21 years are eligible and

females are not eligiable .

2. Write a program to decide the eligibility criteria.

/*DEMO:NESTED if.else STATEMENT*/

/*PGM: ELIGIBILITY CRITERIA*/

include <stdio.h>

main()

{

int age;

char sex:

clrscr(); /* M FOR MALE AND F FORFEMALE/*

Printf (―Enter the sex of the candidate/n‖)

Scanf (―/n %c‖, &sex);

If (Sex= =‘M‘)

{

Printf (―AGE:‖) /* TEST MALE / NOT*/

Scnaf (―%d‖, & age); /* ENTER AGE*/

If (Age>= 21)

 /* TEST AGE IS 21 /MORE OR NOT*/

Printf (―THE MALE CANDIDATE IS ELIGIBLE /n‖);

 else /* MALE&<21 YRS*/

printf (:THE MALE CANDIDATE ISNOOT ELIBLE /n‖)

}

else /* FEMALE*/

printf (―THE FEMALE CANDIDATE ISNOT ELIGIBLE /n‖); }

 Programming in C

Page 31 Compiled by Kishore J Reddy

/* DEMO:NESTED if…. Else STATEMENT */

/* PGM:ELIGIBILITY CRITERIA */

include<stdio.h>

main()

{

int age;

char sex, region; /* ‗L‘ for LOCAL, ‗N‘ for Non-local */

clrscr();

printf(―ENTER SEX‖); /* INPUT */

scanf(―%c‖, &sex);

if (sex == ‗M‘) /* TEST:MALE / NOT */

{

printf(―ENTER AGE AND REGION:‖); /* INPUT */

scanf(―%d\n%c‖,&age,®ion);

if(age>=21) /* TEST:AGE 21 OR MORE */

{

if(region==‘L‘) /* TEST LOCAL/NOT */

printf(―ELIGIBLE\N‖);

else /* MALE, AGE 21/MORE BUT NON-LOCAL */

printf(―NOT ELIGIBLE\N‖);

}

else /* MALE BUT AGE IS LESS THAN 21 YRS */

printf(―NOT ELIGIBLE\N‖);

}

else /* FEMALE */

printf(―NOT ELIGBLE\N‖);

}

 Programming in C

Page 32 Compiled by Kishore J Reddy

/* DEMO:NESTED if…. Else STATEMENT */

/* PGM:ELIGIBILITY CRITERIA */

include<stdio.h>

main()

{

int age,avg_marks;

char sex;

clrscr();

printf(―ENTER SEX AGE AND AVERAGE MARKS:‖);

scanf(―%c%d%d‖, &sex, &avg_marks);

if (sex==‘M‘) /* TEST MALE/NOT */

{

if (age>=21) /* FOR MALE TEST : AGE:21 YRS/MORE */

{

if(aavg_marks>=50) /* TEST:AVG.MARKS=50% / MORE */

printf(―HE IS ELIGIBLE \N‖);

else /* MALE AGED:21/MORE BUT AVG.MARKS LESS THAN 50 */

printf(―HE IS NOT ELIGIBLE \N‖);

}

else /* FEMALE */

printf(―HE IS NOT ELIGIBLE\N‖);

}

else

{

if (sex==‘F‘)

{

if (age>=18) /* TEST:AGE:18 /MORE */

{

if (avg_marks>=35) /* TEST AVG.MARKS:35% / MORE */

printf(―SHE IS ELIGIBLE\N‖);

else /* AVG.MARKS LESS THAN 35% */

printf(―SHE IS NOT ELIGIBLE\N‖);

}

else

printf(―SHE IS NOT ELIGIBLE\N‖); } } }

 Programming in C

Page 33 Compiled by Kishore J Reddy

Switch Statement:

 It is also a branching statement.

 C has a built in multiple branch selection statement called ‗Switch‘.

 This statement successively tests the value of an expression against a list of

constants.

 When a match is found, the statements associated with that condition are

executed.

Syntax: The syntax of switch statement is given below:

Switch(expression)

{

Case constant 1:

Executable statements;

Break ;

Case constant 2:

Executable statements;

Break ;

Case constant n:

Executable statements ;

Break ;

Default :

Executable statements (wrong statements);

Break ;

}

The Rules of Syntax:

 The Key word Switch is followed by an expression which is enclosed by a pair

of parentheses (…) as follows:

 Programming in C

Page 34 Compiled by Kishore J Reddy

Switch (index)

 The parentheses are not terminated by a semicolon.

 The expression within the parentheses may b e an integer value of a

character but it should not be a floating point value.

Case Labels:

 Each value of the case labels should be different from each other as shown

below:

Eg: 1,2,3,…….,n (or)

 A,.B,C,…..X

 They should not be given as

1,1,2,2,3,3…….n (or)

A,A,B,B,C,C…..X

 The case labels should be followed by a colon(:)

eg: case1:

 case2:

 If there is more than one executable statement ,then they should be written

within a pair of braces as shown below:

Case (1):

 {

 Printf (―THE NUMBER IS GREATER THAN 0 \n‖);

 Printf (―THE NUMBER IS A POSITIVE INTEGER \n‖);

}

 All these statements should be terminated by a semicolon (;)

example program for Switch statement:

/* demo:switch statement */

#include<stdio.h>

{

 Int opt_yr,opt_mt;

 clrscr();

 Printf(―ENTER THE OPT YEAR \n‖);

 Scanf(―%d‖,&opt_yr);

 Printf(―ENTER THE OPT MONTH \n‖);

 Programming in C

Page 35 Compiled by Kishore J Reddy

 Scanf(―%d‖,&opt_mt);

 Switch(opt_mt)

 Case 1: Printf(―January‖);

 Break;

 Case 2: Printf(―February‖);

 Break;

 Case 3: Printf(―March‖);

 Break;

 Case 4: Printf(―April‖);

 Break;

 Case 5: Printf(―May‖);

 Break;

 Case 6:Printf(―June‖);

 Break;

 Case 7: Printf(―July‖);

 Break;

 Case 8: Printf(―August‖);

 Break;

 Case 9: Printf(―September‖);

 Break;

 Case 10: Printf(―October‖);

 Break;

 Case 11: Printf(―November‖);

 Break;

 Case 12: Printf(―December‖);

 Break;

 }

 Printf(―* * :%d \n‖,opt_yr);

 Printf(―~~~~~~~~~~~~~~~~~~~~~~~~ \n‖);

Output:

ENTER THE OPT YEAR: 1999

ENTER THE OPT MONTH:12

DECEMBER * * 1999

 Programming in C

Page 36 Compiled by Kishore J Reddy

Types of Loops:

 Loops are generally classified into two depending on the position of the test

condition in the loop.

They are:

1. Entry Control Loops ------ 1.While, 2.For loop

2. Exit Control Loops ---------- 1.do.. While loop

1.Entry Control Loops:

 While loop and for loop ,the test condition is placed above the body of the

loop.

 Thus in these two loops , the test condition is evaluated first. If it is TRUE, the

statement in the loop are executed.

 Since the test condition is evaluated at the entry point of the loop itself, these

two are known as entry control loops.

2.Exit Control Loops:

 If the test condition is placed below the body of the loop as in a

do while loop, it is known as exit control loop.

 In this case, the statements in the statement block are executed first and then

the test condition is evaluated.

 Hence, irrespective of the test condition being TRUE or FALSE, the

statements in the body of the loop are executed at least once.

 If the test condition is TRUE, the loop is executed for the the required

number of times until the test condition becomes FALSE. Then the Control

goes out of the loop.

Types of loops in C

 In C, there are 3 types of Loop Constructs available for performing loop

operations.

They are:

1. The while loop.

2. The do-while loop

3. The for loop

 Programming in C

Page 37 Compiled by Kishore J Reddy

1) while loop:

 The while loop ―evaluates the condition first‖, and execution starts only

if the condition is found to be true.

 The statements in the loop are executed if the ―text condition is true‖

and the ―execution continues‖ as long as it remain true.

 If the condition is false it will comes out of loop.

 Here Condition followed by statements

 It is an entry control loop

 Syntax: The syntax of while loop is given below:

 Initialization;

 While (expression)

 {

 Executable statement 1;

 Executable statement 2;

 ………

 ………

 Executable statement n;

 Incrementation;

 }

 We can find that the three parts in while loop.

1. Initialization

2. Expression

3. Incrementation/Decrementation

1.Initialization:

 The process of giving an initial value to a variable is called initialization. If we

initialize a certain value, then that initial value will be taken as the first value.

Further incrementation is carried out upon the value.

 Programming in C

Page 38 Compiled by Kishore J Reddy

2.Expresssion:

 A test condition is used in a loop in order to control the repetitive action of the

loop. The loop is made to repeat itself until the test condition becomes

FALSE(zero).

 Test conditions can be designed in two ways.

1. To repeat the loop for a predefined number of times.

2. To repeat the loop until the fulfillment of certain conditions.

3.Incrementation/Decrementation:

The incrementation /decrementation statement is present to enable repeated

executions of the statements in the body of the loop, until the test condition becomes

FALSE.

Examples:

/* program to find the sum of the digits of a given number */

#include<stdio.h>

#include<math.h>

main()

{

long int num,sum;

clrscr();

printf(―enter the number‖);

scanf(―%ld‖,&num);

sum=0;

while(num!=0)

{

sum=sum+num%10;

num=num/10;

}

printf(―SUM OF THE DIGITS OF THE GIVEN NUMBER IS %ld‖,sum);

}

 Programming in C

Page 39 Compiled by Kishore J Reddy

Example2:

/* program to reverse the given number */

#include<stdio.h>

main()

{

long int num,rev;

clrscr();

printf(―enter the number‖);

scanf(―%ld‖,&num);

rev=0;

while(num!=0)

{

rev=rev*10+num%10;

num=num/10;

}

printf(―THE REVERSED NUMBER IS %ld‖,rev); }

2. Do while loop:

 This construct executes the ―body of the loop exactly once‖ first.

 And then evaluates the ―test condition is true the execution is repeated‖.

 Test condition false it will come out of loop.

 Here Statements followed by condition

 It is an exit control loop

Syntax: The general syntax of Do while loop is given below:

 Initialization;

 do

 {

 Executable statement 1;

 Executable statement 2;

 ………
 ………
 Executable statement n;

 Incrementation ;

 }

 While (condition);

 Statement ;

 Programming in C

Page 40 Compiled by Kishore J Reddy

We can find that the three parts in do while loop.

1.Initialization

2. Expression

3. Incrementation/Decrementation

1.Initialization:

 The process of giving an initial value to a variable is called initialization. If we

initialize a certain value, then that initial value will be taken as the first value.

Further incrementation is carried out upon the value.

2.Expresssion:

 A test condition is used in a loop in order to control the repetitive action of the

loop. The loop is made to repeat itself until the test condition becomes

FALSE(zero).

 Test conditions can be designed in two ways.

1. To repeat the loop for a predefined number of times.

2. To repeat the loop until the fulfillment of certain conditions.

3.Incrementation/Decrementation:

The incrementation /decrementation statement is present to enable repeated

executions of the statements in the body of the loop, until the test condition becomes

FALSE.

Example1:

/* display 1 to n numbers */

#include<stdio.h>

main()

{

int i=0,n;

printf(―how many integers to be displayed‖);

scanf(―%d‖,&n);

 do

{

printf(―i‖,\n);

i++;

}

while(i<n);

}

 Programming in C

Page 41 Compiled by Kishore J Reddy

Example2:

 /* To check the given number is palindrome or not using do while */

#include<stdio.h>

main()

{

int n,num,digit,rev=0;

printf(―enter the number‖);

scanf(―%d‖,&num);

n=num;

do

{

digit=num%10;

rev=rev*10+digit;

num=num/10;

}

while(num!=0);

printf(―the reverse number is %d‖,rev \n);

if(n==rev)

printf(―the given number is polindrom‖);

else

printf(―the number is not a polindrom‖);

}

3) For Loop:

 “ The for loop is useful while executing a statement a fixed number of times‖.

Syntax:

The syntax of for loop is given below:

 For (initialization ;condition ;updation)

 {

 Executable statements;

 }

 statement;

 Programming in C

Page 42 Compiled by Kishore J Reddy

 The initialization part is executed only once.

 Next text condition is evaluated, If the test ―evaluates to false‖ , then the

next statement ―after the for loop is executed.‖

 If the text expression ―evaluates to true‖ the after the ―executing the

body of the loop‖, the update part is executed.

 It is an entry control loop.

We can find that the three parts in for loop.

1.Initialization

2. Expression

3. Incrementation/Decrementation

1.Initialization:

 The process of giving an initial value to a variable is called initialization. If we

initialize a certain value, then that initial value will be taken as the first value.

Further incrementation is carried out upon the value.

2.Expresssion:

 A test condition is used in a loop in order to control the repetitive action of the

loop. The loop is made to repeat itself until the test condition becomes

FALSE(zero).

 Test conditions can be designed in two ways.

1. To repeat the loop for a predefined number of times.

2. To repeat the loop until the fulfillment of certain conditions.

3.Incrementation/Decrementation:

 The incrementation /decrementation statement is present to enable

repeated executions of the statements in the body of the loop, until the test

condition becomes FALSE.

 Programming in C

Page 43 Compiled by Kishore J Reddy

Example1:

 /* program for Armstrong numbers between 100 and 1000 */

#include<stdio.h>

main()

{

int num,a,b,c;

clrscr();

printf(―Armstrong numbers between 100 and 1000 are: \t‖);

for(num=100;num<1000;num++)

{ a=num/100;

 b=(num%100)10;

 c=num%10;

 num=100*a+10*b+c;

 if(a*a*a+b*b*b+c*c*c)==num)

 printf(―%d \t‖,num);

} }

 Example2:

/* program to display numbers between 500 and 700 divisible by 13 */

#include<stdio.h>

#include<math.h>‘

main()

{

int ctr,i;

ctr=0;

clrscr();

printf(―The numbers are \n‖);

for(i=500; i<700; i++)

{

if(i%13==0)

{

printf(―%5d‖,i);

ctr=ctr+1;

}}

printf(―\n the numbers which are divisible by 13 are %d‖,ctr); }

 Programming in C

Page 44 Compiled by Kishore J Reddy

Example3:

/* program to find the sum of all odd numbers less than a given number */

#include<stdio.h>

#include<math.h>

main()

{

int num,sum,limit;

clrscr();

sum=0;

printf(―Enter the limit \n limit= ―);

scanf(―%d‖, &limit);

for(num=1; num<limit; num++)

{

if(num%2!=0)

sum=sum+num;

}

printf(―THE SUM OF ODD NUMBERS LESSTHAN %d IS %d \n‖,limit,sum);

}

 Programming in C

Page 45 Compiled by Kishore J Reddy

C Arrays:

 Arrays constitute a very powerful mechanism or tool in C.

 In an ordinary variable, we can store only value at a time.

 In other words, the current value of an ordinary variable is replaced by the

latest value assigned to it.

 Hence, we can always store only one value in an ordinary variable at a time.

Do we have any alternate?

Yes. By using an Array.

 An array can hold and manipulate a set of data consisting of items having

similar data type.

What is an Array?

 An Array is a derived data type and it is a collective name given to a set

of similar quantities of any primary data type namely int, float and char.

(or)

 An array is defined as collection of similar elements that shares a

Common name. Similar means all are int (or) all are float (or) all are

Char (or)

 Array is defined as collection of homogeneous elements that shares a

common name.

Derived data type:

 Int, float and char are the primary data types. Those data types which

are created by using the primary data types are called derived or

secondary data types.

 An array of ints or an array of floats are commonly known as an ARRAY

and an array of chars is called a STRING or a CHARACTER ARRAY.

 Programming in C

Page 46 Compiled by Kishore J Reddy

How to create an array:

 If we have to create an array with the ages of 30 students, it is to be

written as age[30].

 Age refers to the set if ages if students. The total number of quantities in

an array should be given within a pair of square brackets[…] and the

quantities are called elements. In other words, the 30 mentioned in the

brackets refers to the maximum length of the array. It is also known as

the size of the array.

Declaration of an Array:

 In C, just like any other ordinary variable, the data type of an array must be

declared before it is used in a program.

 The general format of an array declaration is as follows:

Syntax: data type variable_name[size];

Eg.: Int age[30];

Data type: It refers to the data type of the elements contained in the array.

Eg.: Ages of students, No. of students.

Variable_name: It refers to the collective name of all the elements (of similar nature

and data type) contained in the array.

Eg.: Salaries, heights, weights, marks, temperature in degress

etc.

Size: It refers to the maximum number of elements that can be stored in an array.

Eg.: float height[50];

 This array declaration indicates that the array height is constructed with 50

elements all having float as their data type.

 Likewise, Int age[30];

What happens if we exceed the limit of „size‟?

 „size‟ represents the boundary(maximum number of elements) of an array. It

you voluntarily or inadvertently cross the boundary, the compiler gives no

error message . However, it returns some unpredictable results. Hence, be

cautious. If you declare an array of size 10, then you can fill the array with

only 10 or less than 10 values but never more than 10.

 Programming in C

Page 47 Compiled by Kishore J Reddy

 MEMORY DIAGRAM

LOC
ATIN
NOS:
0 1
2 3
4 5
6 7
8 9

 Note: In an array the first location is referred to by „0‟ and not by „1‟.

Hence, for the array marks[10] the memory location numbers are 0,1,2,3,----9.

Initialization of Arrays:

 As soon as an array, say, marks[5] is declared, only 5 locations are reserved

for the 5 elements in the computer‘s memory and the array‘s name marks is

automatically associated with these locations.

 The elements do not hold any values but they contain only some garbage

value initially.

 During the execution of the program, we fill the array locations with the

corresponding values.

 We can initialize an array at the time of declaration itself. In this case, the

general format of initialization is as follows:

 Data type array_name[size]={list of values};

Eg.: int marks[5] = {50,55,60,65,70};

 Float price[6] = {10.50, 11.10, 12.00, 13.00, 14.10, 15.00};

 In this manner, if an array is initialized at the time of declaration itself, the

following form is also valid.

 Int age[] = {10, 15, 20, 25, 30 };

 Giving the size is optional in case of initialization. In such a case, the

compiler assumes the number of locations that are required , depending on

the number of elements that are initialized in the array.

 Programming in C

Page 48 Compiled by Kishore J Reddy

 We have already learnt that unless and until some values are assigned to the

elements of an array they contain garbage values. In order to avoid this, an

array can be declared with the static storage class as shown below:

 Static int age[5];

 When an array is declared along with the storage class as a Static Variable,

during the array, the remaining elements are filled with zeros.

 Now let us see the memory diagram for the different cases.

When an array is declared as: int age[5];

 Age

 0 1 2 3 4

Note: Since no storage class is defined, by default the compiler assumes that it is an
auto storage class and each location ultimately contains some garbage value.

 When an array is initialized at the time of declaration as:

int age[5] = {10,20,30,40,50}; age

 10

 20

 30

 40

 50

 0 1 2 3 4

Note: Since values are assigned to the array elements, the location are filled with the

 Corresponding values.

 When an array is declared as Static int and initialized with a lesser number of values
than the defined size as: Static int age[5] = {10,20,30};

 Age

 10 20 30 0 0

 0 1 2 3 4

Actually the array is declared with 5 elements in the static variable declaration, but it is
initialized with only 3 values instead of 5. Hence, the last two locations are filled with
zero.

Accessing Array Elements:

 Programming in C

Page 49 Compiled by Kishore J Reddy

 By using the printf statement, we can write out the value of any element of an

array by referring to the corresponding element number written within square

brackets after the array name.

Eg: The third element is referred to as age [2]

 For reading and writing arrays we use for loop

For e.g.:

 # include<stdio.h>

 main()

{

int age[5], c;

printf (―enter the value of ages one by one\n‖);

for(c=0;c<5;c++)

{

scanf(―%d‖, &age[c]);

}

for(c=0;c<5;c++)

{

printf(― the element is %d‖, c+1,age[c]);

}

}

OUTPUT:

Enter the values of ages one by one

23 45 34 26 19

The element 1=23

The element 2=45

The element 3=34

The element 4=26

The element 5=19

 Programming in C

Page 50 Compiled by Kishore J Reddy

2-D Arrays:

 In real life, we encounter several situations wherein we deal with a table of

values. That means, they have 2 dimensions, say, length and breadth.

 2-D arrays can be used for storing such tables of values.

 A 2-D array should not be interpreted as an array having 2 lines . But, it is an

array with two dimensions (horizontal and vertical) of any size.

Example:

 Quality

 Product

 A

 B

 C

 1

 200

 300

 400

 2

 150

 250

 300

 3

 100

 200

 300

 The above table consists of 9 values. The horizontal side (row) has 3

values and the vertical side (column) has 3 values.

 In mathematics, we call it simply as a 3x3 matrix (reads as 3 by 3 matrix).

 In this table, each row represents the rates of the products A,B,C

belonging to a particular quality.

Declaration: The general format of the declaration of a 2-D array is as follows:

Data type array name[row size][column_size];

 E.g.: int price_list [3][3];

 Programming in C

Page 51 Compiled by Kishore J Reddy

Rules of Syntax:

 The declaration statement of 2-D arrays is similar to that of single dimension

arrays. The only difference is that the array name is followed by 2 pairs of

square brackets, instead of one as in a single dimension array.

 In the first set of square brackets, the size (No. of elements) of the row has to

be written and in the second set of square brackets the size (No. of elements)

of the column has to be written.

 The statement is terminated by a semicolon.

 Initialization:

 The general format of the initialization of a 2-D array is as shown below:

Datatype array_name [row_size] [column_size] =

{

{I row value 1, value 2, ………value n},

{ II row value 1, value 2, ………value n},

 …………………………………

 …………………………………

{ nth row value 1, value 2, ………value n}

};

Rules of Syntax:

 All the initializable values should be enclosed within a pair of braces and after

the closing brace a semicolon should be written.

 Within the outermost braces for each row of the 2-D array, one pair of braces

should be written and within each such pair of braces, the values of the

corresponding elements should be written.

 A comma separates each such value. Each row‘s closing brace is followed by

a comma except the last row.

 The table of values is represented by index numbers as shown below:

 Column No 0 1 2

 Row No – 0

 Row No – 1

 Row No -2

 200

 150

 100

 300

 250

 200

 400

 350

 300

 Programming in C

Page 52 Compiled by Kishore J Reddy

The above values in the price list are referred to as shown below:

 Row No.

 Col. No.

 Code

 Reference Value

 0

 0

 Price_list [0] [0]

 200

 0

 1

 Price_list [0] [1]

 300

 0

 2

 Price_list [0] [2]

 400

 1

 0

 Price_list [1] [0]

 150

 1

 1

 Price_list [1] [1]

 250

 1

 2

 Price_list [1] [2]

 350

 2

 0

 Price_list [2] [0]

 100

 2

 1

 Price_list [2] [1]

 200

 2

 2

 Price_list [2] [2]

 300

How to access the elements of a 2-D array?

We can access the elements of a 2-D array, either by index numbers or by pointers.

The same methodology used in single dimensional arrays is also applicable here.

Example Program:

/* To access the elements of 2-D array by using subscripts */

main()

{

int x,y;

int price_list[3][3] = { {200,400,600}, {250,450,650}, {300,500,700}};

clrscr();

for(x=0; x<3, x++)

{

printf(―\n‖);

for(y=0; y<3; y++)

{

 Programming in C

Page 53 Compiled by Kishore J Reddy

printf(―%d \t‖,price_list[x][y]);

 }

 }

 }

OUTPUT:

 200 400 600

 250 450 650

 300 500 700

Example of 2-D Arrays:

/* C program to add two matrices */

#include<stdio.h>

main()

{

int a[10][10], b[10][10], c[10][10], I, j, m, n, p, q;

printf(―input row and column of A matrix \n‖);

scanf(―%d %d‖, &n, &m);

printf(― %d %d \n‖, n, m);

printf(―input row and column of B matrix \n‖);

scanf(―%d %d‖, &p, &q);

printf(― %d %d \n‖, p, q);

/* checks if matrices can be added */

If((n == p) && (m ==q))

{

printf(―matrices can be added \n‖);

printf(―input A – matrix \n‖);

for(i=0; i<n; ++i)

for(j=0; j<m; ++j)

scanf(―%d‖, & a[I][j]);

/* print A – matrix in matrix form */

for(i=o; i<n; ++i)

{

 for(j=0; j<m; ++j)

 printf(―%5d‖, a[I][j]);

 Programming in C

Page 54 Compiled by Kishore J Reddy

 printf(―\n‖);

}

printf(―input B – matrix \n‖);

for(i=0; i<n; ++i)

 for(j=0; j<m; ++j)

scanf(―%d‖, &b[I][j]);

/* print B – Matrix in matrix form */

 for(i=o; i<n; ++i)

{

 for(j=0; j<m; ++j)

 printf(―%5d‖, b[I][j]);

 printf(―\n‖);

}

/* addition of two matrices */

 for(i=o; i<n; ++i)

 for(j=0; j<m; ++j)

 C[iI][j] = a[i][j] + b[i][j];

 printf(―sum of A & B matrices: \n‖);

for(I=0; I<n; I++)

{

 for(j=0; j<m; ++j)

 printf(―%5d‖,C[I][j]);

 printf(―\n‖);

}

}

else

printf(―matrices cannot be added \n‖);

} /*main */

OUTPUT:

Input row and column of A matrix

 3 3

input row and column of B matrix

1 2

matrices cannot be added

 Programming in C

Page 55 Compiled by Kishore J Reddy

input row and column of A matrix

3 3

input row and column of B matrix

3 3

matrices can be added

Input A – matrix

1 2 3

4 5 6

7 8 9

input B – matrix

1 2 3

4 5 6

7 8 9

Sum of A and B matrices:

2 4 6

8 10 12

14 16 18

Example:2

/* C program to subtract two matrices */

#include<stdio.h>

main()

{

int a[10][10], b[10][10], c[10][10], I, j, m, n, p, q;

printf(―input row and column of A matrix \n‖);

scanf(―%d %d‖, &n, &m);

printf(― %d %d \n‖, n, m);

printf(―input row and column of B matrix \n‖);

scanf(―%d %d‖, &p, &q);

printf(― %d %d \n‖, p, q);

/* checks if matrices can be subtracted*/

If((n == p) && (m ==q))

{

printf(―matrices can be subtracted \n‖);

 Programming in C

Page 56 Compiled by Kishore J Reddy

printf(―input A – matrix \n‖);

for(i=0; i<n; ++i)

for(j=0; j<m; ++j)

scanf(―%d‖, & a[I][j]);

/* print A – matrix in matrix form */

for(i=o; i<n; ++i)

{

 for(j=0; j<m; ++j)

 printf(―%5d‖, a[I][j]);

 printf(―\n‖);

}

printf(―input B – matrix \n‖);

for(i=0; i<n; ++i)

 for(j=0; j<m; ++j)

scanf(―%d‖, &b[I][j]);

/* print B – Matrix in matrix form */

 for(i=o; i<n; ++i)

{

 for(j=0; j<m; ++j)

 printf(―%5d‖, b[I][j]);

 printf(―\n‖);

}

/* subtraction of two matrices */

 for(i=o; i<n; ++i)

 for(j=0; j<m; ++j)

 C[iI][j] = a[i][j] - b[i][j];

 printf(―difference of A & B matrices: \n‖);

for(I=0; I<n; I++)

{

 for(j=0; j<m; ++j)

 printf(―%5d‖,C[I][j]);

 printf(―\n‖); } }

else

 Programming in C

Page 57 Compiled by Kishore J Reddy

printf(―matrices cannot be subtracted\n‖);

} /*main */

Example:3

/* C program to multiplication of two matrices */

#include<stdio.h>

#include<conio.h>

main()

{

int a[3][3], b[3][3], c[3][3], I, j, k, m, n, p, q;

clrscr();

printf(―\n Enter the order of matrix a:‖);

scanf(―%d%D‖, &m,&n);

printf(―\nEnter the order of matrix b:‖);

scanf(―%d%d‖,&p,&q);

if (n!=0)

{

printf(―\n Matrix multiplication is not possible‖);

for (I=0;I<m;I++)

{

for (j=0;j<n;j++)

scanf(―%d‖,&a[I][j]);

}

printf(―\nEnter elements jof b:‖);

for (I=0;I<p;I++)

{

for (j=0;j<q;j++)

scanf(―%d‖,&b[I][j]);

}

clrscr();

printf(―\n order of matrix a:%d X%d‖,m,n);

printf(―\n Elements of a :\n‖);

for(I=0;I<m;I++)

{

 Programming in C

Page 58 Compiled by Kishore J Reddy

for(j=0;j<n;j++)

printf(―%d\t‖,a[I][j]);

printf(―\n‖);

}

printf(―\n order of matrix b:%d X%d‖,p,q);

printf(―\n Elements of b :\n‖);

for(I=0;I<p;I++)

{

for(j=0;j<q;j++)

printf(―%d\t‖,b[I][j]);

printf(―\n‖);

}

printf(―\n order of matrix c:%dX%d‖,m,q);

printf(―\n Elements of c:\n‖);

for(I=0;I<m;I++)

{

for(j=0;j<q;j++)

{

c[I][j]=o;

for(k=0;k<p;k++)

c[I][j]=a[I][k]*b[k][j]+c[I][j];

}

}

for(I=0;I<m;I++)

{

for(j=0;j<q;j++)

printf(―%d\t‖,c[I][j]);

printf(―\n‖);

}

printf(―\n‖);

}

getch();

}

 Programming in C

Page 59 Compiled by Kishore J Reddy

C Strings:

 If an integer values are stored in an array, it is called an ‗Integer array‘ ,

whereas if floating point values are stored in an array, it is called a ‗Floating

point array‘.

 A string is an array of characters which is terminated by a Null(‗\0‘) character.

Character Array: Char title [] = {‗I‘, ‘N‘, ‗S‘, ‗I‘, ‗D‘, ‗E‘, ‗R‘};

String: Char title[] = {‗I‘, ‘N‘, ‗S‘, ‗I‘, ‗D‘, ‗E‘, ‗R‘};

 Each character with in a string is stored as an element of an array and each

character occupies a length of 1 byte or memory.

 In order to access and avail of one or more of such string-oriented functions in

a program, one should #include the header file containing the string library

functions to the program as shown below:

 #Include <string.h>

The salient features of a string are as follows:

 A string is a one-dimensional array of characters.

 It is always terminated by a null (‗\0‘) character because it indicates the end of

the string to those functions, which work on it.

 A string may contain any set of characters written between a pair of double

quotes.

E.g.: ― A string is always enclosed by a pair of double quotes‖.

DECLARATION:

A string is also a valid variable in C. Hence, it should declared like any other

variable before it is used in a program.

 The declaration of a string is similar to that of an array.

 The general format of the declaration of a string is as shown below.

 Char String_name(size);

 Char title [10];

 The difference we find in the declaration of a string from that of an array is

that an array ‗s data type may be either integer or float, whereas for a string it

is always of character type.

 Programming in C

Page 60 Compiled by Kishore J Reddy

Size:

The size indicator is the maximum number of characters that can be stored in a

string.

E.g.: char title [10];

The elements of a string are stored in contiguous memory locations in the memory

like those of an array.

Initialization:

 A string can be initialized just like an array at the time of declaration itself.

 A string may be initialized in either of the tow following ways. They are:

 Char title [12] = ―CALLCLEAR‖;

 Char title [12] = {‗C‘ ‗A‘ ‗L‘ ‗L‘ ‗C‘ ‗L‘ ‗E‘ ‗A‘ ‗‗R‘, ‗\0‘};

 When we initialize a string as in the second method, by listing each element

separately, we must explicitly supply the Null (‗\0‘) character as the last

character of the string.

String Representation in Memory:

 A string is stored in memory by using ASCII codes of the characters that from

the string.

The representation of the string HELLO in memory is shown in the following figure.

 H

 E

 L

 L

 O

 /O

―Character string representing in memory‖ and end with NULL characters.

 Programming in C

Page 61 Compiled by Kishore J Reddy

Reading a String:

The process of reading a string is almost similar to that of an array.

 The scanf() function is used to read characters or numericals.

 In arrays, %d is the data conversion code, which is used for integer values,

and %f is used for floating point values. Whereas in strings %sis sued as the

data conversion code.

 For reading arrays, in the second part of the scanf statement, that is, in the list

of addresses of variables, each variable is preceded by an Ampersand (&)

sign, as shown below:

 &marks, &qty, &roll-no etc.

 Whereas, for reading strings, the general format of the scanf statement is

the same as that arrays but without the ampersand (&) sign.

E.g.: If the declaration statement of a string is

 Char name [10];

It can be read by using the scanf statement as follows:

scanf(―%s‖, name); is a valid scanf statement which is used to read a string.

 Note that no „&‟ sign is present and also now [] is suffixed to the string title in

both the scanf() and printf() functions.

Writing of a string:

Like an array, a string can also be written by using the printf function, the data

conversion code us %s. The general format of the printf statement for writing a

string is as follows:

 Printf(―%s‖, string_name);

 E.g.: Printf(―%s‘, title);

This printf statement is executed as a part of the program and the title is displayed to

this screen.

 Programming in C

Page 62 Compiled by Kishore J Reddy

String Handling Standard Library Functions

 In order to avail of one or more of such functions in a program, the

corresponding header file should be #include to the program, at the top of

main() as follows:

 #Include <string.h>

 The following table lists out the most commonly used string-handling functions

with brief explanation of the purpose of each function as well as the datatype

of its return values.

FUNCTION

 PURPOSE

 Strlen (s)

 Strlwr (s)

 Strupr (s)

 Strcmp (s1,s2)

 Strnicmpi (s1,s2)

 Strcmp (s1, s2)

 Strev (s)

 Strdup (s)

 Strcat (s1, s2)

 Strncat (s1,s2)

 Strncpy (s1,s2)

 Strset (s,c)

 Returns the number of character in a string.

 Converts the string from the upper to lower case

 Converts the string from the lower to upper case

 Compares string s1 with s2.

 Compares two strings s1 and s2 ignoring their

case

 Compares the first n characters of 2 strings by

ignoring their case

 Reverses a string

 Duplicates a string

 Appends the string s1 at the end of string s2.

 Appends the first n characters of the string s1 at

 Copies the string s2 to string s1.

 Sets all characters with in the string s to the

character c.

 Programming in C

Page 63 Compiled by Kishore J Reddy

Strlen() function:

 This is used to find the length of a string actually stored in an array.

 The null character is not included in the calculation of the string.

General form:

 Strlen(s);

 This returns an integer value for the number of characters present in the

strings.

Strcat() function:

 This function joins two strings together.

General form:

 Strcat(s1,s2);

 This appends the strings s2 to s1, overwriting the existing null character in the

string s1 and providing a new null character after appending s2.

 The Programmer must ensure that the size of s1 sufficiently large to hold both

s1 and s2. The string at s2 remains unchanged.

E.g.: s1= ―Good‖

S2=‖Evening‖

Strcat(s1,s2)

The result is

S1= ―Good Evening‖

It is possible to have nesting of strcat functions.

The statement:

 Strcat(strcat(n1,n2,n3));

Joins all the strings n1, n2 and n3 together and result is stored in n1.

Strcmp() function:

This function is used to compare two strings.

General form:

 Strcmp(s1,s2);

This function compares two strings s1 and s2 character by character.

It returns integer value.

 Programming in C

Page 64 Compiled by Kishore J Reddy

It returns

 == 0 – if two strings are identical

 < 0 -- if the first string is less than second string

 >0 -- if the first string is greater than second string

E.g.:

 St1 = ―raghu‖

 St2 = ―snaju‖

 Strcmp(st1,st2);

The result is st1 and st2 are not same.

Strcpy() function:

General form is:

 Strcpy(s1,s2);

 Here the character in the string s2 are copied to the string s1, over writing

any existing data in s1. The length of s1 should be greater than or equal to

s2.

 E.g.: strcpy(name, ―sanju‖);

Will assign the string ―sanju‖ to the variable name.

 Similarly, the statement strcpy(name1,name2); assigns contents of string

variable name2 to name1.

Example1:

/* Example for strlen() function */

#include <stdio.h>

#Include <string.h>

main()

{

int n1,n2,n3;

Char goal[] = ―PERFECTION‖;

Char goal[] = ―SELF CONFIDENCE‖;

clrscr();

n1 = strlen(goal);

n2 = strlen(need);

n3 = strlen(―SELF CONTROL‖); /* Direct Insertion */

printf(―YOUR GOAL IS %s (LENGTH =%d‖) \n‖, goal,n1);

 Programming in C

Page 65 Compiled by Kishore J Reddy

printf(―YOUR NEED IS %s (LENGTH =%d‖) \n‖, need,n2);

printf(―ALSO %s (LENGTH =%d‖) \n‖, ―SELF CONTROL‖,n3);

}

Output:

YOUR GOAL IS PERFECTION (LENGTH =10)

YOUR NEED IS SELF CONFIDENCE (LENGTH = 15)

ALSO SELF CONTROL (LENGTH =12)

Example2:

/* Program for strcat() function */

#include<stdio.h>

#include<string.h>

main()

{

char dont[20] = ―SELF‖;

char have[11] = ―CONFIDENCE‖;

clrscr();

strcat(don‘t,have);

printf(―dont lose; %s \n‖, dont);

printf(―do have; %s ‖, have);

}

Output:

Dont lose: SELF CONFIDENCE

Do have : CONFIDENCE

Example3:

/* program for strcmp() function */

#include<string.h>

main()

{

char s1[] = ―RAVINDRA‖;

 Programming in C

Page 66 Compiled by Kishore J Reddy

char s2[] = ―RABINDRA‖;

char s3[] = ―RAVINDRA‖;

clrscr();

strcmp(s1,s2) == 0? Printf(―IDENTICAL \N‖):printf(―%d \n ―, strcmp(s1,s2));

strcmp(s1,s3) == 0? Printf(―IDENTICAL \N‖):printf(―%d \n ―, strcmp(s1,s3));

}

Output:

20 [Ascii values v=89 and b = 66 : Difference =20]

IDENTICAL [STRING S1.S3 ARE IDENTICAL]

Example4:

/* program for strcmp() function */

#include<string.h>

#include<stdio.h>

main()

{

char s1[] = ―RAJA‖;

char s2[] = ―RAAJ‖;

char s3[] = ―RAAJA‖;

int a,b,c;

clrscr ();

a = strcmp(s1, ―RAJA‖);

b = strcmp(s1,s2);

c = strcmp(s1,s3);

printf(―%d \t %d \t %d \n‖, a,b,c);

}

Output:

0 9 9

 Programming in C

Page 67 Compiled by Kishore J Reddy

Example5:

/* program for strcpy() function */

#include<stdio.h>

#include<string.h>

main()]

{

char strsong[] = ―MELODUY‖;

char strear[10] ;

char strlove[] = ―ILU‖;

char strheart[10];

clrscr();

strcpy(strear,strong);

printf(―strsong:%s \n ―, strong);

printf(―strear:%s \n ―, strear);

printf(―strheart:%s \n ―, strlove);

printf(―strheart%s \n ―, strheart);

printf(―strlove:%s \n ―, strlove);

}

Output:

strong:MELODY

strear:MELODY

strheart:ILU

strlove:ILU

 Programming in C

Page 68 Compiled by Kishore J Reddy

C Structures and Unions

 A Structure is derived date type (Called as „struct‟ type) variable which is

capable of holding dissimilar data types namely integer elements, floating

point elements as well as character elements and their derived data types at a

time.

 The declaration of a structure is more complicated than that of an array

because it should be declared in terms of each element.

 The declaration of structure consists of 2 parts. They are:

1. Declaration of elements 2. Declaration of variables.

 Declaration of Members

 General Format

 Example

Struct label

 {

 data type member 1;

 data type member 2;

 ………………………..

 ……………………….

 Data type member n;

 };

Struct book

 {

 int pages;

 char name;

 float price;

 };

Struct: This is a keyword representing the data type Structure, and every

declaration should start with the keyword „Struct‟.

Rules of Syntax:

 Each declaration of the members should be terminated by a semicolon just

like any other variable type decalration statements.

 Programming in C

Page 69 Compiled by Kishore J Reddy

 Each member should be given a distinct name.

 E.g.: Roll_no, name[10], hours, tot_wage etc.

 The type declaration of the members should be made within a pair of braces.

 The closing brace is followed by a semicolon.

Note:

The members of a structure are capable of holding not only ordinary variables (int,

float and char) but also derived data types namely, arrays, strings, pointers and

other structures too.

Declaration of Variables:

Once the structure members are declared as shown above, one or more struct type

variables should be declared. The general format of the same is as follows:

 Struct label_name Variable 1, variable 2, variable 3;

 Sturct report worker 1, worker 2, worker 3;

 Struct bill item 1, item 2, item 3;

 Struct statement unit 1, unit 2 unit 3;

Rules of Syntax:

 This variable declaration statement contains:

 Struct which is a keyword.

 Lable name e.g.:report (which is the same we have given in the declaration of

members)

 If there is more than one variable the variables are separated by commas.

Note: There is no limit on the number of variable names. Hence, we can declare

as many variables as required by the program.

 E.g.: Suppose we want to prepare wage_report for 20 workers, then 20

 Variables are declared as follows:

 Strcut report worker 1, worker 2, ……………………., worker 20.

 Programming in C

Page 70 Compiled by Kishore J Reddy

Initialization:

 Structure variables can also be initialized like any other primary variable (int,

float, char) and derived variables (arrays, strings, etc.,).

Example program:

/ * Initialization of a structure */

main()

{

 struct report

 {

 int roll_no;

char[10] name;

int hours;

float tot_wage;

 };

struct report worker1 = {1, ―sudhir‖, 50, 1500.00};

 worker2 = {2, ―sunil‖, 60, 1800.00};

 worker3 = {1, ―suresh‖,70, 2100.00};

 …………………………………………………………

 …………………………………………………………

…………………………………………………………

 }

Memory Location:

 The elements of a structure are stored in contiguous memory locations of a

computer.

 Worker1.roll_no Worker1.name Worker1.hours worker1.wage

6001 6003 6013 6015 6019

If you analyze the above memory allocation, you can observe the following facts.

 Programming in C

Page 71 Compiled by Kishore J Reddy

Worker1:

 Variable Type Byte No.s No. of Bytes Remarks

 Roll_no

 Name

 Hours

Tot_wages

int

string char[10]

int

float

6001 – 6003

6003 – 6013

6013 – 6015

6015 – 6019

 2

 10

 2

 4

For each variable, the

same number of bytes are

allocated in contiguous

memory locations

respectively, one by one

 Hence, the data composition of each worker occupies 18 bytes in memory.

 In the same fashion, worker2 and worker3 are also allocated 18 bytes each to

store their data in contiguous memory locations one by one.

Accessing the elements of a structure:

 The linking between a variable and an element is made by a dot(.) operator,

which is called the member operator or the period operator.

Example:

/ * Structure declaration, initialization, writing, memory * /

#include <stdio.h>

main()

{

struct report

{

int roll_no;

char name[10];

int no_hours;

float tot_wages;

};

struct report worker1 = {1, ―sudhir‖, 50, 1500.00};

 Programming in C

Page 72 Compiled by Kishore J Reddy

struct report worker2 = {2, ―sunil‖, 60, 1800.00};

clrscr();

printf(―\t WAGE REPORT \n‖);

printf(―~~ \n‖);

printf(―%d \t %s %d \t %d \t \n‖, worker1.roll_no, worker1.name, worker1.no_hours,

worker1.tot_wages);

printf(―%d \t %s %d \t %d \t \n‖, worker1.roll_no, worker1.name, worker1.no_hours,

worker1.tot_wages);

printf(―~~ \n‖);

printf(―%u \t %u \t %u \t %u \n‖, worker1.roll_no, worker1.name, &worker1.no_hours,

&worker1.tot_wages);

printf(―%u \t %u \t %u \t %u \n‖, worker1.roll_no, worker1.name, &worker1.no_hours,

&worker1.tot_wages);

printf(―~~ \n‖);

}

Giving values to the elements of a structure:

 With the help of the scanf () function, we can give values to the members of

a structure through the keyboard. As usual, in the scanf statement, the

address of variable. member should be given as shown below:

E.g.: scanf(―%d‖, &worker1.roll_n);

Example:

/ * Reading the values from the keyboard and writing */

#include <stdio.h>

struct report

{

int roll_no;

char name[10];

int no_hours;

float tot_wages;

};

main()

 Programming in C

Page 73 Compiled by Kishore J Reddy

{

struct report worker1, worker2;

 clrscr();

printf(―Enter values of all elements one by one \n‖);

scanf(―%d %s %d %f‖, &worker1.roll_no, &worker1.name, &worker1.no_hours,

&worker1.tot_wages);

scanf(―%d %s %d %f‖, &worker2.roll_no, &worker2.name, &worker2.no_hours,

&worker2.tot_wages);

printf(―\n %d \t %s \t %d \n‖, worker1.roll_no, worker1.name, &worker1.no_hours,

&worker1.tot_wages);

printf(―\n %d \t %s \t %d \n‖, worker1.roll_no, worker1.name, &worker1.no_hours,

&worker1.tot_wages);

}

Arrays within structure:

Suppose we could write 100 variables like, struct report worker1, worker2,

……….worker100;

Besides, for giving values to the variables, we could write 100 scanf statements.

For writing the values of the variables, we could write 100 printf statements.

but this is a very laborious, cumbersome as well as error-prone exercise.

Is there is any alternative?

Yes . we can construct an array of structures .

Example:

/* construct an array of structures with 5 workers*/

#include <stdio.h>

struct report

{

int roll_no;

char name[10];

int no_hours;

float tot_wages;

}; struct report Worker[5]; /* array declared in structure*/

Int i;

 clrscr();

 Programming in C

Page 74 Compiled by Kishore J Reddy

printf(―Enter roll no. , name, no of hours hours worked, total wages‖);

for (i=0;i<5;i++)

{

scanf(―%d %s%d %f‖, &worker[i].roll_no, &worker[i].name, &worker[i].no_hours,

&worker[i].tot_wages);

}

Printf(― ROLL NO, NAME , NO. OF HOURS, TOTAL WAGES);

Printf(―¬¬‖);

for (i=0;i<5;i++)

{

printf(―%d %s%d %f‖, worker[i].roll_no, worker[i].name, worker[i].no_hours,

worker[i].tot_wages);

}

}

UNIONS

 The basic reason behind development on union data type is to save memory

in the program environment , when a large number of variables are

used.

 Union is a Special data type in C through which objects of different types and

sizes can be stored at different times.

 With the help of unions, we can refer to the same memory location through

different types of variables.

 For example a memory location of 4 bytes occupied by a floating point values

can be referred to by a character array of length 4.

 The general format of declaration of a Union as follows.

union tag Eg: union price_list

{ {

Data type member1; char name[10];
Data type member2; int qty;
-------------------- char grade;

-------------------- float price;
Data type member n;
} list of variables; } x,y,z;

 Programming in C

Page 75 Compiled by Kishore J Reddy

 The tag can be used to declare many other variables of the same union as

in a structure.

 In the above example, in x or y, z variables, we can store an integer, a

float, a character or a string of size 10 elements.

 Union members are referred in the same way as structures.

 A union can have any numbers of members.

 A union type variable takes as much memory as its largest data type

member occupies.

 For example, in the above example the union has 4 members,

name,(string 10 bytes), qty (integer-2 bytes_, grade(char-1 byte) and price

(float-4 bytes).

 Among the 4 members, the first name (string 10 bytes) is the largest

memory occupying members. Hence the union occupies 10 bytes.

Main differences between Structures and Unions

 Sturucture Union

1. It is a derived data type 1. it is also derived data type

2. we use the keyword struct 2. we use the key word union

3. general format is 3. general format is

Struct label union lable

 { {

 data type member 1;

 data type member 2; data type member 1;

 data type member 2;

 ……………………….. ………………………..

 ………………………. ………………………..

 Data type member n; data type member n;

 }; struct label variable1, variable2….variable n; } list of variables ;

4. occupies much memory 4. occupies less memory

 Programming in C

Page 76 Compiled by Kishore J Reddy

File Management

 Store data permanently for further use.

 It is also treated as a data type and it is created in the secondary memory or

disks (hard disk or floppy disk), which can store data it in permanently.

 A file is a place on a disk, which contains a collection of related records,

usually containing data pertaining to a specific area of application. In a file, all

the records are identical to each other, in structure.

 We have deal with small volumes of data, and we stored and manipulated

them with various primary and secondary data types and we have used

standard I/O functions. Mainly scanf() and printf(), for inputting and outputting

data respectively, in such data types.

 But in real life we deal with large volumes of data and the data should be

stored permanently for further use.

 But the data types we have used so far are incapable of sorting data

permanently.

 The standard I/O function, Scanf() and Printf (), etc., are incapable of dealing

with large volumes of data. It is very cumbersome and error prone exercise to

handle large volumes of data through terminals.

 Because of the aforesaid reasons, there is a serious need for seeking a

unique data type with its own batch of I/O specialties.

 Such a data type should have the following features:

1. It should be able to work on secondary storage device like disks.

2. It should be able to store data permanently.

3. It should be able to deal with large volumes of data

4. we should be able to access, read, write and modify the data from it as

and when it is required

5. there should be a set of I/O specialties in order to handle the data in

such data type.

 The data type which possesses all the aforesaid features is called as file.

 Programming in C

Page 77 Compiled by Kishore J Reddy

