Department of Mathematics

SGGDC PILER Course Objectives and outcomes

Course Code	Course name	Objectives	Outcomes
Code 1-1-112	Differential Equation;	 I. First order and first degree Equations: Linear Differential Equations; Differential Equations Reducible to Linear Form; Exact Differential Equations; Integrating Factors; Change of Variables. II. Differential Equations of first order but not of the first degree : Equations solvable for p; Equations solvable for y; Equations solvable for x; Equations that do not contain. x (or y); Equations of the first degree in x and y – Clairaut's Equation. III. Higher order linear differential equations-I : 	 Students will be able to: Distinguish between linear, nonlinear, partial and ordinary differential equations. States the basic existence theorem for 1st order ODE's and use the theorem to determine a solution interval. Recognize and solve a variable separable differential equation. Recognize and solve a homogeneous differential equation. Recognize and solve an exact differential equation.
			Recognize and solve a linear

 > Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators. > General Solution of f(D)y=0 > General Solution of f(D)y=Q when Q is a function of x. 1 filleDil is Expressed as partial fractions. > P.I. of f(D)y = Q when Q = be^{ax} > P.I. of f(D)y = Q when Q is b sin ax or b cos ax. IV. Higher order linear differential equations with constant coefficients. > P.I. of f(D)y = Q when Q = bx^k > P.I. of f(D)y = Q when Q = bx^k > P.I. of f(D)y = Q when Q = bx^k > P.I. of f(D)y = Q when Q = bx^k > P.I. of f(D)y = Q when Q = bx^k > P.I. of f(D)y = Q when Q = bx^k 	 differential equation by use of an integrating factor. Recognize and solve equations of Bernoulli, Ricatti and Clairaut. Make a change of variables to reduce a differential equation to a known form. Find particular solutions to initial value problems. Solve basic application problems described by first order differential equations. . Use the existence theorem for boundary value problems to determine uniqueness of solutions. Use the Wronskian to determine if a set of functions is linearly independent. Build solutions to differential equation of known solutions.
--	---

P.I. of f(D)y = Q when Q= xV	Find the complete solution of a
> P.I. of f(D)y = Q when Q = $x^m V$	non-homogeneous differential
V. Higher order linear	equation as a linear
differential equations-III :	combination of the
Nothed of uprintion of parameters	complementary function and a
Linear differential Equations with	particular solution.
non-constant coefficients; The	Construct a second solution to a
Cauchy-Euler Equation.	second order differential
	equation by reduction of order.
	Find the complete solution of
	a homogeneous differential
	equation with constant
	coefficients by examining the
	characteristic equation and its
	roots.
	Find the complete solution of
	a non-homogeneous
	differential equation with
	constant coefficients by the
	method of undetermined
	coefficients.
	Write a differential equation
	with constant coefficients in
	operator
	form and find the complete

			 solution by using an annihilator operator. Find the complete solution of a differential equation with constant coefficients by variation of parameters. Solve basic application problems described by second order linear differential equations with constant coefficients. Solve a Cauchy-Euler Equation.
1-2-112	Solid Geometry	 I. The Plane : Equation of plane in terms of its intercepts on the axis, Equations of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane. 	 Students will be able to: understand geometrical terminology for angles, triangles, quadrilaterals and circles measure angles using a protractor use geometrical results to determine unknown angles

II. The Line :	Ш	recognize line and
Equation of a line; Angle between a		rotational symmetries
line and a plane; The condition that		Find the areas of triangles,
a given line may lie in a given plane;		quadrilaterals and circles
The condition that two given lines		and shapes based on these.
are coplanar; Number of arbitrary		Geometry helps students to
constants in the equations of straight		develop their inductive and
line; Sets of conditions which		deductive reasoning skills and to
determine a line; The shortest		apply these skills in the advanced
distance between two lines; The		study of geometric relationships.
length and equations of the line of		In this course students will explore
shortest distance between two		the basic concepts and methods
straight lines; Length of the		of Euclidean Geometry while
perpendicular from a given point to		deepening their understanding
a given line;		about plane and solid geometry.
III.\$phere :	Ο	Course topics include reasoning
Definition and equation of the		and proof, line and angle
sphere; Equation of the sphere		relationships, two and three
through four given points; Plane		dimensional figures, coordinate
sections of a sphere; Intersection of		plane geometry, geometric
two spheres: Equation of a circle:		transformations, surface area and
Sphere through a given circle;		volume. Core processes include
Intersection of a sphere		
and a line; Power of a point; Tangent		

plane; Plane of contact; Polar plane;	reasoning, problem solving and
Pole of a Plane; Conjugate points;	communication. Successful
Conjugate planes;	completion of this course will earn
Angle of intersection of two spheres;	the student a high school credit
Conditions for two spheres to be	and will prepare them for
orthogonal; Radical plane; Coaxial	Algebra.
system of spheres; Simplified from of	
the equation of two spheres.	
IV. Cones :	
Definitions of a cone; vertex; guiding	
curve; generators; Equation of the	
cone with a given vertex and	
guiding curve; Enveloping cone of α	
sphere; Equations of cones with	
vertex at origin are homogenous;	
Condition that the general equation	
of the second degree should	
represent a cone; Condition that a	
cone may have three mutually	
perpendicular generators;	
Intersection of a line and a quadric	
cone; Tangent lines and tangent plane	

		at a point; Condition that a plane	
		may touch a cone; Reciprocal cones;	
		Intersection of two cones with a	
		common vertex; Right circular cone;	
		Equation of the right circular cone	
		with a given vertex; axis and semi-	
		vertical angle.	
		V. Cylinders :	
		> Definition & equation to the cylinder	
		whose generators intersect a given	
		conic and are parallel to a given	
		line; Equation of the Enveloping	
		cylinder and the right circular	
		cylinder with a	
		given axis and radius.	
1-3-112	Abstract Algebra	> To provide a first approach to the	The students who succeeded in this
		subject of algebra, this is one of the	course;
		basic pillars of modern mathematics	
		and to study of certain structures	Will be able to define algebraic
		called groups, rings, fields and some	structures.
		related structures.	➢ Will be able to construct
		Group:	substructures.
		Binary Operation – Algebraic	Will be able to analyze a given

	structure;semi group-monoid –		structure in detail.
	Group definition and elementary	\triangleright	Will be able to develop new
	properties Finite and Infinite groups,		structures based on given
	examples; order of a group.		structures.
	Composition tables, examples	\triangleright	Will be able to compare structures.
ubg	roups :		
	Complex Definition – Multiplication		
	of two complexes Inverse of a		
	complex-Subgroup definition –		
	examples-criterion for a complex to		
	be subgroups. Criterion for the		
	product of two subgroups to be a		
	subgroup-union and Intersection of		
	subgroups.		
0-10	tt and Lagrange't Theorem		
	Cosets Definition; properties of Cosets		
	;Index of a subgroups of a finite		
	groups ;Lagrange's Theorem.		
orm	al subgroups		
	Definition of normal subgroup –		
	proper and improper normal		
	subgroup–Hamilton group –		
	criterion		
	for a subgroup to be a normal		

subgroup – intersection of two
normal subgroups – Sub group of
index 2 is a normal sub group –
simple group – quotient group –
criteria for the existence of a
quotient group.
Homomorphism
Definition of homomorphism; Image
of homomorphism elementary
properties of homomorphism;
Isomorphism
automorphism definitions and
elementary properties-bernel
elementary properties kerner
nomomorphism fundamental
theorem on Homomorphism and
applications.
Permutations and cyclic groups
Definition of permutation;
permutation multiplication ; Inverse
of a permutation; cyclic
permutations; transposition ;
even
and odd permutations; Cayley's

		theorem.	
		Cyclic Groups :-	
		Definition of cyclic group; elementary	
		properties ; classification of cyclic groups.	
1-4-112	Degl Anglusis		The student will be
1-4-114	keal Analysis	The student will:	The student will be :
		Define the real numbers, least upper	Apply mathematical concepts
		bounds, and the triangle inequality.	and principles to perform
		Define functions between sets;	numerical and symbolic
		equivalent sets; finite, countable and	computations.
		uncountable sets. Recognize	\succ Use technology appropriately to
		convergent, divergent, bounded,	investigate and solve
		Cauchy and monotone sequences.	mathematical and statistical
		> Calculate the limit superior, limit	problems.
		inferior, and the limit of a sequence.	Write clear and precise proofs.
		Recognize convergence of series.	> Communicate effectively in both
		Cauchey's general principle of	written and oral form.
		convergence for series tests for	Demonstrate the ability to read
			and learn mathematics and/or
			statistics independently.

convergence of series, Series of Non-	
Negative Terms.	
1. P-test	
2. Cauchey's n th root test or Root Test.	
3. D'-Alemberts' Test or Ratio Test.	
4. Alternating Series – Leibnitz Test.	
-	
Real valued Functions, Boundedness of a function, Limits of functions.	
Some extensions of the limit concept,	
Infinite Limits. Limits at infinity. No.	
Question is to be set from this	
portion.Continuous functions.	
Combinations of continuous	
functions, Continuous Functions on	
intervals, uniform continuity.	
The derivability of a function, on an	
interval, at a point. Derivability and	
continuity of a function. Graphical	
meaning of the Derivative. Mean	
value Theorems: Role's Theorem.	
Lagrange's Theorem. Cauchhu's	
· · · _ · _ · _ · · · · · ·	

		 Mean value Theorem Riemann Integral, Riemann integral functions, Darboux theorem. Necessary and sufficient condition for R – integrability, Properties of integrable functions, Fundamental theorem of integral calculus, integral as the limit of a sum, Mean value Theorems. 	
1-5-125	Ring Theory and Vector Calculus	 Student should understand from Ring Theory The relation between roots and coefficients of a polynomial; elementary symmetric functions; complex roots of unity; and solutions by radicals of cubic and quadratic equations. The characteristic of a field and the prime subfield. 	 The student will be compute and analyze: Scalar and cross product of vectors in 2 and 3 dimensions represented as differential forms or tensors, The vector-valued functions of a real variable and their curves and in turn the geometry of such curves including curvature, torsion and the Frenet-Serre frame and intrinsic geometry,

➢ Factorization and ideal theory in	> Scalar and vector valued
the polynomial ring ;	functions of 2 and 3 variables and
\succ The structure of a primitive field	surfaces, and in turn the geometry
extension. Field extensions and	of surfaces.
characterization of finite normal	> Gradient vector fields and
extensions as solitting fields The	constructing potentials
structure and construction of finite	Integral curves of vector fields and
fields. Counting field	solving differential equations to
homeomorphisms; the Galois group	find such curves,
and the Galois correspondence.	> The differential ideas of
Radical field extensions.	divergence, curl, and the
> Soluble groups and solubility by	Laplacian along with their
radicals of equations.	physical interpretations, using
Vector Calculus:	differential forms or tensors to
Vector Differentiation, Ordinary	represent derivative operations,
derivatives of vectors,	> The integral ideas of the functions
Differentiability,	defined including line, surface and
Gradient	volume integrals - both
, Divergence, Curl operators,	derivation and calculation in
Formulae Involving these operators.	rectangular, cylindrical and
> Line Integral, Surface Integral, and	spherical coordinate systems and
Volume integral with examples.	understand
Theorems of Gauss and Stokes.	the proofs of each instance of the

		Green's theorem in plane and applications of these theorems.	 fundamental theorem of calculus, and Examples of the fundamental theorem of calculus and see their relation to the fundamental theorems of calculus in calculus 1, leading to the more generalized version of Stokes' theorem in the setting of differential forms.
1-5-126	Linear Algebra	 Use computational techniques and algebraic skills essential for the study of systems of linear equations, matrix algebra, vector spaces, Eigen values and eigenvectors, orthogonality and diagonalization Use visualization, spatial reasoning, as well as geometric properties and strategies to model, solve problems, and view solutions, especially in R² 	 Apply mathematical methods involving arithmetic, algebr a, geometry, and graphs to solve problems. Represent mathematical information and communicate mathematical

and R ³ , as well as conceptually	reasoning
extend these results to higher	symbolically
dimensions.	an
> Critically analyze and construct	d verbally.
mathematical arguments that	Interpret and analyze
relate to the study of introductory	numerical
linear algebra.	data, mathematical
> Use technology, where appropriate,	concepts, and identify
to enhance and facilitate	patterns to formulate and
mathematical understanding, as	validate reasoning.
well as an aid in solving problems	
and presenting solutions	Analyze finite and infinite
Communicate and understand	dimensional vector spaces and
mathematical statements, ideas and	subspaces over a field and their
results, both verbally and in writing,	properties, including the basis
with the correct use of mathematical	structure of vector spaces,
definitions, terminology and	Use the definition and properties
symbolism	of linear transformations and
 Work collaboratively with peers and 	matrices of linear transformations
instructors to acquire mathematical	and change of basis, including
understanding and to formulate	kernel, range and isomorphism,
and and	Compute with the characteristic
coluo problems and present solutions	polynomial, eigenvectors, Eigen
solve problems and present solutions	

			 values and Eigen spaces, as well as the geometric and the algebraic multiplicities of an eigenvalue and apply the basic diagonalization result, Compute inner products and determine orthogonality on vector spaces, including Gram-Schmidt Orthogonalization, and Identify self-ad joint transformations and apply the spectral theorem and orthogonal decomposition of inner product spaces, the Jordan canonical form to solving systems of ordinary differential equations.
1-6-112	Laplace Transforms	Students will be able to: ➤ Know the definition of the Laplace Transform.	differential equations. Students will be able to: Find the Laplace transform of a function by definition

		Calculate the Laplace Transform of		and by use of a table.
		basic functions using the definition.	\triangleright	Find the inverse Laplace
	\triangleright	Find the Laplace transform of		transform of a function.
		derivatives and anti-derivatives of	\triangleright	Write piecewise functions
		functions.		using the unit step
	\triangleright	Compute inverse Laplace Transforms		function.
	\triangleright	Apply Laplace Transforms to find	\triangleright	Find transforms using the
		solutions of initial value problems for		first and second translation
		linear ODEs.		theorems.
	\triangleright	Write piecewise functions in terms of	\triangleright	Find the convolution of
		unit step functions and find their		two functions and the
		Laplace Transforms.		transform of a convolution.
	\triangleright	Solve certain ODEs where the	\triangleright	Find the transforms of
		forcing term is given by a piecewise		derivatives and integrals.
		continuous function.	\triangleright	Find the transform of a
				periodic function.
			\blacktriangleright	Solve a basic integro-
				differential equation using
				the Laplace transform.
			\triangleright	Solve linear differential
				equations with constant

			coefficients and unit step
			input functions using the
			Laplace transform.
1-6-112A	Integral Transforms	> The course is aimed at exposing the	 On successful completion of
		students to learn the Laplace	the course students will be
		transforms and Fourier transforms.	able to recognize the
		Yo equip with the methods of finding	different methods of
		Laplace transform and Fourier	finding Laplace transforms
		Transforms of different functions.	and Fourier transforms of
		\succ To make them familiar with the	different functions.
		methods of solving differential	They apply the knowledge
		equations, partial differential	of L.T, F.T, and Finite
		equations, IVP and BVP using	Fourier transforms in
		Laplace transforms and Fourier	finding the solutions of
		transforms.	differential
			equations, initial value
			problems and boundary
			value problems.
1-6-112B	Advanced Numerical	The course strives to enable students to:	Student will be able to:
	Analysis		
		Understand analytical,	> Understands the nature and
		developmental and technical	demonstrates familiarity with
		principles that relate to	

prob > Com appr solut roots equa appr num	lem. pare the viability of different oaches to the numerical ion of problems arising in of solution of non-linear itions, interpolation and oximation; erical differentiation and
num	erical differentiation and ration, solution of linear
syste	ms.